位相的場の理論 Topological field theory
位相的場の理論 Topological quantum field theory
4 :
ご冗談でしょう?名無しさん:2005/03/29(火) 00:41:22 ID:BGzrbB0C
またお前か
スレ立て厨氏ね
ドーナツ
____
/ \
/ \
/ __ \
| / \ |
| | | |
| | | |
| \__/ |
\ /
\ /
\____/
コーヒーカップ
______
/______\
// \\
| | | |
___| | | |
| __ \\______//|
| | | \______/ |
| | | |
| |__| |
\__ |
| |
| |
\ /
\______/
ボール
____
/ \
/ \
/ \
| |
| |
| |
| |
\ /
\ /
\____/
メガネ
____ ____
/ \ / \
/ \/ \
/ __ __ \
| / \ / \ |
| | | | | |
| | | | | |
| \__/ \__/ |
\ /
\ /\ /
\____/ \____/
____ ____ ____
/ \ / \ / \
/ \/ \/ \
/ __ __ __ \
| / \ / \ / \ |
| | | | | | | |
| | | | | | | |
| \__/ \__/ \__/ |
\ /
\ /\ /\ /
\____/ \____/ \____/
b c
┃┃ ┃
┃┃ ┃
┃┃ ┃
━━━╋╋━━━━━━━━━━━━━━━━╋━━━
a ━━━╋╋━━━━━━━━━━━━━━━━╋━━━ U(3)
━━━╋╋━━━━━━━━━━━━━━━━╋━━━
┃┃ | | ┃
┃┃_/ U_R \_┃
┃┃ Q_L ┃
┃┃ D_R ┃
┃┃ ┃
┃┃ ┃
┃┃ ┃
┃┃_ L_L E_R _┃
┃┃ \ / ┃
┃┃ | | ┃
d ━━━╋╋━━━━━━━━━━━━━━━━╋━━━ U(1)
┃┃ ┃
┃┃ ┃
┃┃ ┃
U(2) U(1)
ワインバーグ−サラム理論を構成するD6ブレーン7枚
______
/ \
/ __ \
___/ / \ |
/ | | |
__/ __ \__/ |___
/ / \ \
| ○ | | ○ |
\|_|_|__ \__/ __ __|_|_/
| | | \ / \ | | |
| | | \___ | | | | |
| | | \ \__/ | | |
| | | \ / | |
| | | \______/ | |
/ / /| |\ \
/ / / | | \ \
| | | | | | |
| | | / \ | |
|/|/| / \|\|
SM HS
D6ブレーンをドーナツ型の空間に巻き付ける
a
/|
/ |
| \ |
| | | ←ボソン
| / | // b
| | / /
| | / /
| | / /
| | / /
| _|__ / /
| | /\ /
| |/ / ←フェルミオン
| / /
| / /
/| / /
/ | / /|
/ |// |
/ /| |
/ / | |
// | |
/ | /
|/
ボソンとフェルミオン
/| /|
/ | / |
/ | / |
/ | / |
/ | / |
/ |/ |
/ /| |
/ / | |
/ / | |
/ / | |
/ / | |
/ / | |
| | | |
| ○ | | |
| | | |
| ○ | | |
| | / /
| ○ | / /
| | / /
| ○ | / /
| | / /
| ○ |/ /
| /| /
| / | /
| ○ / | /
| / | /
| / | /
|/ |/ D3ブレーン
↑
グラビトン
超弦理論(閉じた弦)
_
_/ \_
/ \
| |
/ \
| |
\ /
| |
\_ _/
\_/
超弦理論(開いた弦)
_
\_
\
|
\
|
/
|
_/
_/
超弦理論(閉じた弦)
_
_/ \_
□□□ / \
□ □ | |
□ / \
□ □□ | |
□ □ \ /
□ □ | |
□□□ \_ _/
\_/
超弦理論(開いた弦)
□□□
□ □
□ _
□□□ /
□ /
□ □ | __
□□□ \/ \
/\__/
□ □ | __
□ □ \/ \
□ □ □ /\__/
□ □□ □ | __
□ □ □ □ \/ \
□□ □□ /\__/
□ □ | __
\/ \
□□□□ □□ □□ /\__/
□ □ □ □ □ |
□ □ □ □ □ \
□□□ □ □□ □ \_
□ □ □ □
□ □ □
□□□□ □ □
超弦理論(閉じた弦)
/| /|
/ | / |
/ | / |
/ | / |
/ | / |
/ | / |
| | | |
| | _ | |
| |_/ \_| |
| /| |\ |
| | | | | |
| / | | \ |
| | | | | |
| \ | | / |
| | | | | |
| \|_ _|/ |
| | \_/ | |
| | | |
| | | |
| | | |
| / | /
| / | /
| / | /
| / | /
| / | /
|/ |/
超弦理論(開いた弦)
/| /|
/ | / |
/ | / |
/ | / |
/ | / |
/ | / |
| | | |
| _ | | |
| \_| | |
| |\ | |
| | | | |
| | \ | |
| | | | |
| | / | |
| | | | |
| _|/ | |
| _/ | | |
| | | |
| | | |
| | | |
| / | /
| / | /
| / | /
| / | /
| / | /
|/ |/
超弦理論(開いた弦)
/| /|
/ | / |
/ | / |
/ | / |
/ | / |
/ | / |
| | | |
| | | |
| | | |
| _ | | |
| \_| | |
| |\_ | |
| | \_ | |
| | \|_ |
| | | \_ |
| | | |
| | | |
| | | |
| | | |
| | | |
| / | /
| / | /
| / | /
| / | /
| / | /
|/ |/
Frobenius Algebras and 2-D Topological Quantum Field Theories
(London Mathematical Society Students Texts)
Joachim Kock (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521832675/ Trieste Conference on Topological Methods in Quantum Field Theories Ictp,
Trieste, Italy 11-15 June 1990
W. Nahm (著), S. Randjbar-Daemi (著), E. Sezgin (著), E. Witten (著)
http://www.amazon.co.jp/exec/obidos/ASIN/9810204965/ Topological Quantum Numbers in Nonrelativistic Physics
David J. Thouless (著)
http://www.amazon.co.jp/exec/obidos/ASIN/9810230257/ Topological Quantum Field Theories from Subfactors
(Chapman & Hall/Crc Research Notes in Mathematics Series, No 423)
Vijay Kodiyalam (著), V. S. Sunder (著)
http://www.amazon.co.jp/exec/obidos/ASIN/1584882417/ Geometric and Topological Methods for Quantum Field Theory:
Proceedings of the Summer School Held in Villa De Leyva, Colombia 9 - 27 July 2001
Alexander Cardona (著), Hernan Ocampo (著), Sylvie Paych (著)
http://www.amazon.co.jp/exec/obidos/ASIN/9812381317/ The Link Invariants of the Chern-Simons Field Theory:
New Developments in Topological Quantum Field Theory
(De Gruyter Expositions in Mathematics)
Enore Guadagnini (著)
http://www.amazon.co.jp/exec/obidos/ASIN/3110140284/
Frobenius Algebras and 2-D Topological Quantum Field Theories
(London Mathematical Society Student Texts, No 59)
Joachim Kock (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521540313/ Topological Properties and Global Structure of Space-Time
(Nato Asi Series. Series B, Physics, Vol 138)
Peter G. Bergmann (著), Venzo De Sabbata (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0306423677/ Topological Field Theory, Primitive Forms and Related Topics
(Progress in Mathematics, Vol 160)
Masaki Kashiwara (著), Atsushi Matsuo (著), Ikuo Satake (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0817639756/ Topological Field Theory, Primitive Forms and Related Topics
(Progress in Mathematics S.)
Masaki Kashiwara (著), Kyoji Saito (著), Atsushi Matsuo (著), Ikuo Satake (著)
http://www.amazon.co.jp/exec/obidos/ASIN/3764339756/ Non-Semisimple Topological Quantum Field Theories for 3-Manifolds With Corners
(Lecture Notes in Mathematics (Springer-Verlag), 1765.)
Thomas Kerler (著), Volodymyr V. Lyubashenko (著)
http://www.amazon.co.jp/exec/obidos/ASIN/3540424164/ Geometric And Topological Methods For Quantum Field Theory
(Lecture Notes in Physics)
Hernan Ocampo (著), Sylvie Paycha (著)
http://www.amazon.co.jp/exec/obidos/ASIN/354024283X/
位相的場の理論 Topological quantum field theory の論文
Two-Dimensional String Theory, Topological Field Theories and the Deformed Matrix Model
Authors: Ulf H. Danielsson
http://arxiv.org/abs/hep-th/9401135 Topological conformal field theory with a rational W potential and the dispersionless KP hierarchy
Authors: S. Aoyama, Y. Kodama
http://arxiv.org/abs/hep-th/9404011 The N=1 superstring as a topological field theory
Authors: Neil Marcus
http://arxiv.org/abs/hep-th/9405039 On three-dimensional topological field theories constructed from $D^\omega(G)$ for finite group
Author: Masako Asano, Saburo Higuchi
http://arxiv.org/abs/hep-th/9405099 Poisson Structure Induced (Topological) Field Theories
Authors: Peter Schaller, Thomas Strobl
http://arxiv.org/abs/hep-th/9405110 Constrained Topological Field Theory
Authors: Damiano Anselmi, Pietro Fre', Luciano Girardello, Paolo Soriani
http://arxiv.org/abs/hep-th/9405174 Four dimensional topological quantum field theory, Hopf categories, and the canonical bases
Authors: Louis Crane, Igor B. Frenkel
http://arxiv.org/abs/hep-th/9405183 Non - Topological Solitons in non-minimally coupled Scalar fields: Theory and consequences
Authors: Daksh Lohia
http://arxiv.org/abs/gr-qc/9407014
Geometry of 2d topological field theories
Author: Boris Dubrovin
http://arxiv.org/abs/hep-th/9407018 Canonical BF-type Topological Field Theory and Fractional Statistics of Strings
Authors: Mario Bergeron, Gordon W. Semenoff, Richard J. Szabo
http://arxiv.org/abs/hep-th/9407020 A Renormalized Supersymmetry in the Topological Yang-Mills Field Theory
Authors: A. Brandhuber, O. Moritsch, M.W. de Oliveira, O. Piguet, M. Schweda
http://arxiv.org/abs/hep-th/9407105 Superconformal current algebras and topological field theories
Authors: J.M. Isidro, A.V. Ramallo
http://arxiv.org/abs/hep-th/9407152 The $\eta$-Invariant as a Lagrangian of a Topological Quantum Field Theory
Authors: Ulrich Bunke
http://arxiv.org/abs/hep-th/9408162 2D Yang-Mills Theory and Topological Field Theory
Authors: G. Moore
http://arxiv.org/abs/hep-th/9409044 A New Action Principle for Witten's Topological Field Theory
Authors: R.Gianvittorio, A.Restuccia, J.Stephany
http://arxiv.org/abs/hep-th/9410123 Lectures on 2D Yang-Mills Theory, Equivariant Cohomology and Topological Field Theories
Authors: Stefan Cordes, Gregory Moore, Sanjaye Ramgoolam
http://arxiv.org/abs/hep-th/9411210
Conformal Dimensions from Topologically Massive Quantum Field Theory
Authors: G. Amelino-Camelia, I.I. Kogan, R.J. Szabo
http://arxiv.org/abs/hep-th/9607037 Balanced Topological Field Theories
Authors: R. Dijkgraaf, G. Moore
http://arxiv.org/abs/hep-th/9608169 Topological Field Theory and Second-Quantized Five-Branes
Authors: Kazuyuki Furuuchi, Hiroshi Kunitomo, Toshio Nakatsu
http://arxiv.org/abs/hep-th/9610016 Order-chaos transitions in field theories with topological terms: a dynamical systems approach
Authors: C.Mukku (Dept. of Math,Univ.of Hyderabad),
M.S.Sriram, J. Segar (Dept. of Theoretical Phys., University of Madras),
Bindu A. Bambah (School of Physics, Univ. of Hyderabad),
S. Lakshmibala (Dept. of Physics, Indian Institute of Technology, Madras)
http://arxiv.org/abs/hep-th/9610071 Untwisting Topological Field Theories
Authors: J.M. Figueroa-O'Farrill
http://arxiv.org/abs/hep-th/9611018 Topological Field Theories associated with Three Dimensional Seiberg-Witten monopoles
Author: Y\H uji Ohta (Hiroshima Univ., Dept. of Math.)
http://arxiv.org/abs/hep-th/9611120 Topologically Nontrivial Sectors of Maxwell Field Theory on Riemann Surfaces
Authors: Franco Ferrari
http://arxiv.org/abs/hep-th/9611191
Topologically Nontrivial Sectors of the Maxwell Field Theory on Algebraic Curves
Authors: Franco Ferrari
http://arxiv.org/abs/hep-th/9612152 Topological quantum field theory and crossing number
Author: Zhujun Zheng, Ke Wu, Shikun Wang, Jianxun Hu
http://arxiv.org/abs/hep-th/9612184 Degenerate Solutions of General Relativity from Topological Field Theory
Author: John C. Baez
http://arxiv.org/abs/gr-qc/9702051 Nonlocality, Self-Adjointness and Theta-Vacuum in Quantum Field Theory
in Spaces with Nontrivial Topology
Authors: Yu.A. Sitenko (Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine)
http://arxiv.org/abs/hep-th/9702148 Quasi-Topological Field Theories in Two Dimensions as Soluble Models
Authors: Bruno G. Carneiro da Cunha, P. Teotonio-Sobrinho
http://arxiv.org/abs/hep-th/9703014 Duality and Topological Quantum Field Theory
Authors: J. M. F. Labastida, M. Marino
http://arxiv.org/abs/hep-th/9704032 Algebraic Characterization of Vector Supersymmetry in Topological Field Theories
Authors: L.C.Q.Vilar, O. S. Ventura, C.A.G. Sasaki, S.P. Sorella
http://arxiv.org/abs/hep-th/9706133
Non-Perturbative Results in Global SUSY and Topological Field Theories
Authors: D. Bellisai, F. Fucito, A. Tanzini, G. Travaglini
http://arxiv.org/abs/hep-th/9812145 Duality in the Context of Topological Quantum Field Theory
Authors: J. M. F. Labastida, Carlos Lozano
http://arxiv.org/abs/hep-th/9901161 Predicting the critical density of topological defects in O(N) scalar field theories
Authors: Nuno D. Antunes (U. of Geneva), Luis M. A. Bettencourt (Los Alamos),
Andrew Yates (U. of London)
http://arxiv.org/abs/hep-ph/9901391 Gravity From Topological Field Theory
Authors: J. Gegenberg, R.B. Mann
http://arxiv.org/abs/hep-th/9902041 Quantum Field Theory in a Topology Changing Universe
Authors: Sang Pyo Kim
http://arxiv.org/abs/hep-th/9902077 A topological invariant of RG flows in 2D integrable quantum field theories
Authors: R. Caracciolo, F. Gliozzi, R.Tateo
http://arxiv.org/abs/hep-th/9902094 Perturbing Topological Field Theories
Authors: V.E.R. Lemes, C.A. Linhares, S.P. Sorella, L.C.Q.Vilar, D.G.G. Sasaki
http://arxiv.org/abs/hep-th/9902154
Topological Field Theory and Quantum Holonomy Representations of Motion Groups
Authors: Richard J. Szabo
http://arxiv.org/abs/hep-th/9908051 From Topological Field Theories to Covariant Matrix Strings
Authors: Laurent Baulieu, Celine Laroche, Nikita Nekrasov
http://arxiv.org/abs/hep-th/9909131 Conformal boundary conditions and three-dimensional topological field theory
Authors: G. Felder, J. Fr"ohlich, J. Fuchs, C. Schweigert
http://arxiv.org/abs/hep-th/9909140 The Physical Projector and Topological Quantum Field Theories:
U(1) Chern-Simons Theory in 2+1 Dimensions
Authors: Jan Govaerts, Bernadette Deschepper (Catholic Univ. Louvain, Belgium)
http://arxiv.org/abs/hep-th/9909221 Linking observables in perturbed topological field theories
Authors: V.E.R.Lemes, S.P.Sorella, A.Tanzini, O.S.Ventura, L.C.Q.Villar
http://arxiv.org/abs/hep-th/9910069 Quantum Field Theory of Topological Defects as Inhomogeneous Condensates
Authors: Massimo Blasone, Petr Jizba
http://arxiv.org/abs/hep-th/9910187 Zero-brane approach to quantization of biscalar field theory about topological kink-bell solution
Authors: Konstantin G. Zloshchastiev
http://arxiv.org/abs/hep-th/9912064
Simulation of topological field theories by quantum computers
Authors: Michael H. Freedman, Alexei Kitaev, Zhenghan Wang
http://arxiv.org/abs/quant-ph/0001071 Multi-Instantons, Supersymmetry and Topological Field Theories
Authors: D.Bellisai, F.Fucito, A.Tanzini, G.Travaglini
http://arxiv.org/abs/hep-th/0002110 Vector supersymmetry in topological field theories
Authors: F. Gieres, J. Grimstrup, T. Pisar, M. Schweda
http://arxiv.org/abs/hep-th/0002167 Interacting six-dimensional topological field theories
Authors: F. Gieres, H. Nieder, T. Pisar, L. Popp, M. Schweda
http://arxiv.org/abs/hep-th/0003222 Instanton Calculus, Topological Field Theories and N=2 Super Yang-Mills Theories
Authors: Diego Bellisai, Francesco Fucito, Alessandro Tanzini, Gabriele Travaglini
http://arxiv.org/abs/hep-th/0003272 Eleven dimensional supergravity as a constrained topological field theory
Authors: Yi Ling, Lee Smolin
http://arxiv.org/abs/hep-th/0003285 Unifying Themes in Topological Field Theories
Authors: Cumrun Vafa
http://arxiv.org/abs/hep-th/0005180 Topological quantum field theory and four-manifolds
Authors: Marcos Marino
http://arxiv.org/abs/hep-th/0008100
Symmetries of topological field theories in the BV-framework
Authors: F. Gieres, J.M. Grimstrup, H. Nieder, T. Pisar, M. Schweda
http://arxiv.org/abs/hep-th/0111258 Lie Algebroids as Gauge Symmetries in Topological Field Theories
Authors: M.A.Olshanetsky
http://arxiv.org/abs/hep-th/0201164 Topological gauge theories with antisymmetric tensor matter fields
Authors: B. Geyer, D. M"ulsch
http://arxiv.org/abs/hep-th/0202053 Non-commutative extensions of two-dimensional topological field theories
and Hurwitz numbers for real algebraic curves
Authors: A.Alexeevski, S.Natanzon
http://arxiv.org/abs/math.GT/0202164 Topological Field Theory Interpretation of String Topology
Authors: Alberto S. Cattaneo, Juerg Froehlich, Bill Pedrini
http://arxiv.org/abs/math.GT/0202176 Gauge fixing, families index theory, and topological features of the space
of lattice gauge fields
Author: David H. Adams
http://arxiv.org/abs/hep-lat/0203014 Chern-Simons Term for BF Theory and Gravity as a Generalized Topological Field Theory
in Four Dimensions
Authors: Han-Ying Guo, Yi Ling, Roh-Suan Tung, Yuan-Zhong Zhang
http://arxiv.org/abs/hep-th/0204059
e- μ-
\ /
\ /
\ /
\ /
\ γ /
>〜〜〜<
/ \
/ \
/ \
/ \
/ \
e+ μ+
○\ /○
\ \ / /
\ \ / /
\ \ / /
\ \ / /
\  ̄ ̄ ̄ /
/ ___ \
/ / \ \
/ / \ \
/ / \ \
/ / \ \
○/ \○
○\ /○
\ \ / /
\ \ / /
\ \ / /
\ \/ /
\ /
| |
| |
| |
/ \
/ /\ \
/ / \ \
/ / \ \
/ / \ \
○/ \○
○\ /○
\ \ / /
\ \ / / ○\ /○
\ \ / / \ \ / /
\ \/ / \ \ / /
\ / \ \ / /
| | \ \ / /
| | = \  ̄ ̄ ̄ /
| | / ___ \
/ \ / / \ \
/ /\ \ / / \ \
/ / \ \ / / \ \
/ / \ \ / / \ \
/ / \ \ ○/ \○
○/ \○
○\ /○
\ \ / /
\ \ / /
\ \ / /
\ \ / /
\  ̄ ̄ ̄ /
| | ̄ ̄| |
| | | |
| |__| |
/ ___ \
/ / \ \
/ / \ \
/ / \ \
/ / \ \
○/ \○
○\ /○
\ \ / /
\ \ / /
\ \ / /
\ \ / /
\  ̄ ̄ ̄ ̄ ̄ ̄ ̄ /
| | ̄ ̄| | ̄ ̄| |
| | | | | |
| |__| |__| |
/ _______ \
/ / \ \
/ / \ \
/ / \ \
/ / \ \
○/ \○
○\ /○
\ \ / /
\ \ / /
\ \ / /
\ \ / /
\  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ /
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| | | | | | | |
| |__| |__| |__| |
/ __________ \
/ / \ \
/ / \ \
/ / \ \
/ / \ \
○/ \○
→── e-
/
/ ─→── ν
/
d ──→──────→── u
d ──→──────→── d
u ──→──────→── u
/ ̄ ̄ ̄○
/ / ̄ ̄
/  ̄ ̄ ̄○
/ / ̄ ̄ ̄ ̄
○ ̄ ̄ ̄ ̄ ̄  ̄ ̄ ̄ ̄ ̄○
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
○ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄○
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
○ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄○
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
○\ /○
\ \ / /
\ \ / /
\ \ / /
\ \ / /
\  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ /
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| | | | | | | |
|  ̄ ̄  ̄ ̄  ̄ ̄ |
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| |__| |__| |__| |
/ __________ \
/ / \ \
/ / \ \
/ / \ \
/ / \ \
○/ \○
○\ /○
\ \ / /
\ \ / /
\ \ / /
\ \ / /
\  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ /
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| | | | | | | |
|  ̄ ̄  ̄ ̄  ̄ ̄ |
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| | | | | | | |
|  ̄ ̄  ̄ ̄  ̄ ̄ |
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| |__| |__| |__| |
/ __________ \
/ / \ \
/ / \ \
/ / \ \
/ / \ \
○/ \○
○\ /○
\ \ / /
\ \ / /
\ \ / /
\ \ / /
\  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ /
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| | | | | | | |
|  ̄ ̄  ̄ ̄  ̄ ̄ |
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| |__| |__| |__| |
/ __________ \
/ / \ \
/ / \ \
/ / \ \
/ / \ \
○/ \○
○\ /○
\ \ / /
\ \ / /
\ \ / /
\ \ / /
\  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ /
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| | | | | | | |
|  ̄ ̄  ̄ ̄  ̄ ̄ |
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| | | | | | | |
|  ̄ ̄  ̄ ̄  ̄ ̄ |
| | ̄ ̄| | ̄ ̄| | ̄ ̄| |
| |__| |__| |__| |
/ __________ \
/ / \ \
/ / \ \
/ / \ \
/ / \ \
○/ \○
Geometry of Low-Dimensional Manifolds: Symplectic Manifolds and Jones-Witten Theory
(London Mathematical Society Lecture Note Series)
Lms Durham Symposium (著), C.B. Thomas (著), S.K. Donaldson (著), S. K. Donaldson (著),
C. B. Thomas (著), London Mathematical Society (著)
http://www.amazon.co.jp/exec/obidos/ASIN/0521400015/
109 :
ご冗談でしょう?名無しさん:2005/04/03(日) 01:44:51 ID:aOwfvevH
普通に基地外のスレじゃない?