【ガイガー】インスペクター+統計スレ2

このエントリーをはてなブックマークに追加
1名無しに影響はない(やわらか銀行)
前スレがとつぜん消えてしまったのでたてました。
インスペクター+統計スレ2
統計データを書き込むスレです。
2名無しに影響はない(やわらか銀行):2012/06/10(日) 01:47:11.33 ID:nxFUM7TN
福島第一原発から飛散した主な放射性同位体(核種)全31種・放出量
http://savechild.net/archives/3891.html
αアルファ線(プルトニウム238,240,239,241)
βベータ線(セシウム137 ストロンチウム89,90 テルル、セリウム、ルテニウム)
γガンマ線(セシウム134、ヨウ素)
3名無しに影響はない(やわらか銀行):2012/06/10(日) 01:48:28.01 ID:nxFUM7TN
セシウム汚染地図
http://savechild.net/wp-content/uploads/2011/10/koukabig.gif

EUが輸入規制している都道府県食品(つまり食品が汚染している)
福島、群馬、茨城、栃木、宮城、静岡、長野、山梨、埼玉、東京、千葉、神奈川

フランス核廃棄物処理施設 セントラコ
15.75ベクレル/kgで低レベル放射性廃棄物にて厳重管理
4名無しに影響はない(やわらか銀行):2012/06/10(日) 01:53:37.54 ID:nxFUM7TN
2008年度の放射能調査資料
今の基準が安全かどうかは、原発事故前の資料と比較するべき。
http://www.kankyo-hoshano.go.jp/08/soukatsu_lib/h20_suijun.pdf

魚類セシウム137 最大値0.16Bq/kg 平均値0.085Bq/kg
魚類ストロンチウム90 最大値 0.040Bq/kg 平均値0.0012Bq/kg
お米セシウム137 最大0.42Bq/kg 平均0.015Bq/kg
5名無しに影響はない(やわらか銀行):2012/06/10(日) 02:00:45.95 ID:nxFUM7TN
前スレまとめ 低ベクレル順
1.測定対象  J●ードルコーポレーションBK こだわりの熟成 
2.測定結果  0Bq/kg  

1.測定対象 中華蕎麦
2.測定結果 2.62Bq/kg

1.測定対象 北海道富良野産玉葱 
2.測定結果  2-20Bq/kg Bq/kg

1.測定対象 佐賀市産たまねぎ
2.測定結果 3.45 Bg/kg

1.測定対象  栃木県産 ふきのとう 19g
2.測定結果 28 Bq/kg  

1.測定対象 タマノイ穀物酢 2013.12.16
2.測定結果 42 Bq/kg

1.測定対象 カットわかめ 2012.12.17 中国原産 KKジャパンスパイス」
2.測定結果 45 Bq/kg

1.測定対象 栃木産菜の花
2.測定結果 51 Bq/kg

1.測定対象 神奈川産キャベツ
2.測定結果 89.8 Bq/kg

1.測定対象 栃木県内で販売されていた米
2.測定結果 104Bq/kg
6名無しに影響はない(やわらか銀行):2012/06/10(日) 02:01:11.28 ID:nxFUM7TN
1.測定対象 茨城産白ネギ
2.測定結果 124.8 Bq/kg

1.測定対象 栃木産セリ
2.測定結果 190 bq/kg

1.測定対象 国産鶏胸肉2012.02.08
2.測定結果 200Bq/kg  

1.測定対象 栃木産みつば 2012.05.08
2.測定結果 220 Bq/kg

1.測定対象 栃木県産さんしょう若芽 2012.05.05
2.測定結果 225 Bq/kg

1.測定対象 栃木産 ふき(茎のみ) 2012.05.04
2.測定結果 246 Bq/kg

1.測定対象 栃木産バジル
2.測定結果 253 Bq/kg

1.測定対象 栃木産たけのこ 乾燥後10.5g
2.測定結果 298 Bq/kg

1.測定対象 栃木産 葉が開いたメスのぜんまい 2012.04.04
2.測定結果 370 Bq/kg

1.測定対象 栃木産タラの芽 2012.05.06
2.測定結果 415 Bq/kg

1.測定対象 奥本●粉, Restaurant Macaroni(カナダとアメリカ産小麦)
2.測定結果 800 bq/kg

1.測定対象 栃木県産お茶
2.測定結果 950 Bq/kg

1.測定対象  栃木県産 乾燥椎茸
2.測定結果 1000 Bq/kg

1.測定対象 栃木産しいたけ
2.測定結果  2700 Bq/kg
7名無しに影響はない(やわらか銀行):2012/06/10(日) 02:15:30.40 ID:nxFUM7TN
簡単に食品を測りたい人向け:
食品を乾燥させる。
トータルタイマーでバックグラウンド数値を10分測る。
トータルタイマーで食品の表面や切断面を10分測る。
極端な差があれば汚染していると考えて捨てる。
μSV表示で測定しても汚染はわからない。トータルタイマーでカウント数を測ること。
8名無しに影響はない(栃木県):2012/06/10(日) 11:30:08.83 ID:pq2+EHMC
誰かやってくれると思ったんだけど、関係情報
R関係の統計処理のリンク集をコピー。主に使っているのが、青木さんの所なので、青木さんが主体。

群馬大学 青木 R による統計処理
http://aoki2.si.gunma-u.ac.jp/R/index.html

プログラム R の入手方法とコンピュータへのインストール
http://aoki2.si.gunma-u.ac.jp/R/begin.html

新たに定義した関数
http://aoki2.si.gunma-u.ac.jp/R/src/all.R をDown load
起動直後に「>」が表示されたらばその後に「source("http://aoki2.si.gunma-u.ac.jp/R/src/all.R", encoding="euc-jp") 」と入力する。「Rcmder」と同時には使用できないので要注意。


分散比の検定。等分散か異分散かで検定方法が異なるので分散を調べる。正規分布の場合に限って使用可能。
http://aoki2.si.gunma-u.ac.jp/R/my-var-test.html 二群の等分散性の検定(二次データ)
http://aoki2.si.gunma-u.ac.jp/lecture/Average/bunsan1-r.html 二群の等分散性の検定
http://aoki2.si.gunma-u.ac.jp/lecture/Average/Bartlett-r.html 多群の等分散性の検定

平均値の差の検定
http://aoki2.si.gunma-u.ac.jp/lecture/Average/t-test-r.html 2群正規分布の場合
http://aoki2.si.gunma-u.ac.jp/lecture/Average/U-test-r.html 2群一山分布の場合
http://aoki2.si.gunma-u.ac.jp/lecture/Average/oneway-ANOVA-r.html 分散分析(3群以上、正規分布の場合)
9名無しに影響はない(栃木県):2012/06/10(日) 11:30:34.13 ID:pq2+EHMC
度数分布
http://aoki2.si.gunma-u.ac.jp/R/dosuu-bunpu.html 度数分布表の作成
http://aoki2.si.gunma-u.ac.jp/R/normaldist.html 正規分布用適合度の検定
http://aoki2.si.gunma-u.ac.jp/R/npp2.html 正規確率紙への作画

にちゃんねる内
http://ikura.2ch.net/sim/index.html シミュレーション@2ch掲示板
http://ikura.2ch.net/test/read.cgi/sim/1284162960/l50 【junk.test】雑談専用【try会議室】
http://uni.2ch.net/math/ 数学@2ch掲示板
http://uni.2ch.net/test/read.cgi/math/1294561909/l50 【R言語】統計解析フリーソフトR 第4章【GNU R】
10名無しに影響はない(栃木県):2012/06/10(日) 11:31:06.31 ID:pq2+EHMC
ガイガーカウンターで食品計測 関連テンプレ
http://hakarukun.go.jp/html/jirei/j_kisenbaru/16_01.htm 身近にある食品からの放射線−「はかるくん」を使った40K等からのγ線測定−
http://www.potetokaitsuka.co.jp/img/110719_press.pdf サツマイモを測定することができるw
http://ameblo.jp/geigersokutei/entry-10921797003.html ベータ線を測定してみましょう
http://www.mhlw.go.jp/stf/houdou/2r9852000001558e-img/2r98520000015cfn.pdf シンチ向け 急時における食品の放射能測定マニュアル(厚生労働省)
http://www.kankyo-hoshano.go.jp/series/lib/No1.pdf GM向け 全ベータ放射能測定法 (下ごしらえ)
http://www.kankyo-hoshano.go.jp/series/pdf_series_index.html RI 核種一覧のサイト The Berkeley Laboratory Isotopes Project's Exploring the Table of Isotopes
http://ie.lbl.gov/education/isotopes.htm アルミ中のβ線の飛距離の計算サイト。
http://www.sky.sannet.ne.jp/s_hongo/s/r/particlepath.html
http://www.geocities.co.jp/NatureLand/2111/mushroom/dehydrator/index.htm 家庭内食品の乾燥
http://search.kankyo-hoshano.go.jp/top.jsp 環境放射線データベース
http://www.kobejyukou.com/jisakutosoubusu%20p01.htm ドラフトの例
http://www.yamato-net.co.jp/index.html 理化学機器販売店
http://www.tgk.co.jp/  理化学機器販売店
http://www.sia-japan.com/  理化学機器販売店
http://www.advantec.co.jp/  理化学機器販売店
http://staff.aist.go.jp/t.ihara/weight.html 計算の論理
http://atlas.shinshu-u.ac.jp/class/expclass/exp-05-02.html 計算の論理
http://edycube.blog2.fc2.com/category5-11.html 周波数カウンタにおける1カウントの誤差について
http://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu3/toushin/05031802.htm 食品成分表
ttp://www.beejewel.com.au/research/Bee_Research/pra_software.html フリーのMCAソフト
http://hato.2ch.net/test/read.cgi/lifeline/1309151729/7-13 (京都府)って?
http://hato.2ch.net/test/read.cgi/lifeline/1302253304/973 (京都府)って?
http://hato.2ch.net/test/read.cgi/lifeline/1302253304/980-981 (京都府)って?
http://www.amazon.co.jp/-/dp/B001F9SRSW/ ドライフルーツ用乾燥機
http://www.kankyo-hoshano.go.jp/08/ers_lib/ers_abs01.pdf 福竜丸の頃の水道水の分析方法
http://www.snap-tck.com/room04/c01/stat/stat.html 統計学
http://www.mikage.to/radiation/calc.html 計測値をそのまま入力すると計算してくれるサイト
http://www.kankyo-hoshano.go.jp/series/lib/No24.pdf 「可食部」を検査することの規定
http://www.jrias.or.jp/index.cfm/6,15496,c,html/15496/20110620-095125.pdf 「緊急時における食品中の放射性セシウム測定に用いるNaI(Tl)シンチレーションサーベイメータの機器校正」
http://okwave.jp/qa/q962006.html 鉛対策
http://www.n-hakko.com/bunnseki-houhou.html 灰化
http://ci.nii.ac.jp/naid/110002908385 高温灰化による消失
http://www.jrias.or.jp/index.cfm/6,203,pdf 低温灰化による消失
http://pub.maruzen.co.jp/book_magazine/jikken-kagaku5/index.html 実験化学講座
http://www.amazon.co.jp/%E5%AE%9F%E9%A8%93%E3%82%92%E5%AE%89%E5%85%A8%E3%81%AB%E8%A1%8C%E3%81%86%E3%81%9F%E3%82%81%E3%81%AB-%E5%8C%96%E5%AD%A6%E5%90%8C%E4%BA%BA%E7%B7%A8%E9%9B%86%E9%83%A8/dp/4759809589

(正・続)実験を安全に行うために
http://www.jrias.or.jp/index.cfm/6,15496,c,html/15496/20110620-095125.pdf 日本アイソトープ協会の資料
http://hp.vector.co.jp/authors/VA047235/radiation.html ブラウザで動く放射線・放射能の単位換算ツール
11名無しに影響はない(栃木県):2012/06/10(日) 11:31:41.09 ID:pq2+EHMC
金属による線種の分離方法。光子(γ線とX線)用は、アルミ0.6mm、プラスチック2.4mm。
http://www.rada.or.jp/database/home4/normal/ht-docs/member/synopsis/040264.html
管理図
http://avalonbreeze.web.fc2.com/38_01_05_controlfigure.html
四分位数とヒンジ
http://anchoret.seesaa.net/article/66138520.html
放射線測定器の測定値の平均差の計算ツール
http://www.mikage.to/radiation/calc_diff.html
【junk.test】雑談専用【try会議室】(シミ板)。昔は色々あったけど、今は桂カルク(だと思うけど栃木が使っているの)のみ
http://kamome.2ch.net/test/read.cgi/sim/1284162960/l50
検出限界の考え方
http://ax00.web.fc2.com/atomic/beta/s/s0080.html
心理統計学。文系の方向け統計学。SAS使用
http://www.aichi-gakuin.ac.jp/~chino/psycstat/preface.shtml
統計学自習ノート。ネットでは有名な群大の青木さん。R使用
http://aoki2.si.gunma-u.ac.jp/lecture/
栄養素別食品一覧
http://www.eiyoukeisan.com/calorie/nut_list/kalium.html
放射線測定実験要領書 (ガンマ線に関する基本的な事項, 線量率の測定, γ線の物質による遮へい測定)
http://radonet.servebbs.net/report/lect02.pdf
体内を構成する原子とγ線との 相互作用。人体を水と近似してγ線の吸収量を計算
http://www.ip.k.hosei.ac.jp/serialization/May.pdf
(6)検出器シミュレーション。上記計算用セシウムの定数が記載されている
http://www.nirs.go.jp/usr/medical-imaging/ja/study/nextgeneration-pet/6.html
>線源:137Cs (662keV) 線減弱係数:0.54 cm-1
全β線測定法
http://www.kankyo-hoshano.go.jp/series/lib/No1.pdf
福竜丸の灰の分析
http://home.hiroshima-u.ac.jp/heiwa/Pub/41/41-yamamoto.pdf
具体的操作は、化学便覧の分析化学の章の「スポットテスト」
http://pub.maruzen.co.jp/shop/4621073419.html
前スレで、個別機種情報を除いて拾った範囲。
抜けがあったらば追加ヨロ。
12名無しに影響はない(栃木県):2012/06/10(日) 11:32:12.61 ID:pq2+EHMC
http://gakuen.gifu-net.ed.jp/~contents/kou_nougyou/jikken/SubShokuhin/08/index.html 高校生向け食品の灰分の分析方法。
http://www.shouhiseikatu.metro.tokyo.jp/keiryo/yoshiki/kankyo/kankyo_tebiki.pdf 環境計量証明事業登録の手引き。政府の通達で「乾燥する」とか「(質量を)計る」とかのときに使用する機器
は、これを参照。
http://www.tokutoku.to/geiger/box.html 放射能遮断BOX 鉛10ミリで重さ32キロ 128000円なり
http://space.geocities.jp/sc3xpgs/index.html Radiで食品測れるかな--
http://www.emf-japan.com/emf/emf1/emf211.html 個人で用意出来る遮蔽環境
http://tng.sub.jp/moku2-2-2-6-6067.htm 米国をあきれさせた日本の化学力をおしえたる (化学処理によるセシウムの分離)
http://www.rokakuho.co.jp/data/books/3036.html 米国をあきれさせた日本の化学力をおしえたる (化学処理によるセシウムの分離)
http://www.jrias.or.jp/index.cfm/6,9332,c,html/9332/2006-55-04-07.pdf 低レベル・超低レベル放射能測定の基礎 (鉛から出る放射線対策)
13名無しに影響はない(栃木県):2012/06/10(日) 11:32:49.70 ID:pq2+EHMC
http://uni.2ch.net/test/read.cgi/radiation/1321400997/
インスペクター系総合 2【Plus,Alert】より、関係しそうな内容を抜粋。

http://uni.2ch.net/test/read.cgi/radiation/1321400997/103
103:退避(群馬県):2011/12/06(火) 22:35:29.39 ID:tnNiekf2
 300cpm=1.1Bq/cm2

流れの可視化技術のまとめ 石井幸治(九州大学) 室内(放射性)粉塵の動きを見当
http://www.riam.kyushu-u.ac.jp/gikan/report/08/visualization.pdf
放射線の遮へい (08-01-02-06) β線が紙で遮蔽できない
http://www.rist.or.jp/atomica/data/dat_detail.php?Title_No=08-01-02-06
原発事故で飛散した主な核種
http://savechild.net/archives/3891.html
日本分析センター ストロンチウム90の分析
http://www.jcac.or.jp/service_env_stron90.html


http://uni.2ch.net/test/read.cgi/radiation/1331598144/
インスペクター系総合 3【inspector+,Alert】より、関係しそうな内容を抜粋。

福島第一原発から飛散した主な放射性同位体(核種)全31種・放出量
http://savechild.net/archives/3891.html
ポアソン分布
http://ja.wikipedia.org/wiki/%E3%83%9D%E3%82%A2%E3%82%BD%E3%83%B3%E5%88%86%E5%B8%83
直線関係式(Deming法)と回帰分析 (香川大学医学部検査部)
http://www.kms.ac.jp/~clinilab/units/biochem/cgi-bin/linear/
最小二乗法による回帰直線と相関係数の求め方−回帰分析と相関分析の基礎− (早稲田大学大河内研)
http://www.okochi.env.waseda.ac.jp/pdf/H20Least_square.pdf
放射線計測−計数の統計− (東京理科大学 理学部 物理学科)
http://www.rs.kagu.tus.ac.jp/~phlabex/LabExercise/reports/statistics.pdf
放射線崩壊の確率的性質 (広島大学物理学科)
http://home.hiroshima-u.ac.jp/phys/LectureHP/exp-hp/1-3.html
求積等
http://keisan.casio.jp/has10/SpecExec.cgi 円錐台
http://www.benricho.org/calculate/Cylinder.html 円柱


簡単!栄養andカロリー計算
http://www.eiyoukeisan.com/
カリウムの多い食品と、食品のカリウムの含有量一覧表
http://www.eiyoukeisan.com/calorie/nut_list/kalium.html
やさしお (三重大学 奥村晴彦)
http://oku.edu.mie-u.ac.jp/~okumura/stat/yasashio.php

取扱説明書(英文)
http://seintl.com/manuals/Inspector_Operation_Manual_English.pdf

Rの使い方(文系用)。
http://www.e.okayama-u.ac.jp/~nagahata/ (岡山大学 長畑ビジネス統計解析)
http://www.e.okayama-u.ac.jp/~nagahata/bstat/

このスレの作成の理由
http://uni.2ch.net/test/read.cgi/radiation/1331598144/349
349 :名無しに影響はない(やわらか銀行):2012/04/06(金) 14:38:37.93 ID:v2XDOnI2
栃木さん新スレ作りました。統計学の先生がんばってください。

【ガイガー】インスペクター+統計スレ
http://uni.2ch.net/test/read.cgi/radiation/1333690493/
14名無しに影響はない(栃木県):2012/06/10(日) 21:09:25.29 ID:pq2+EHMC
今日も今日とて、いやになってくる BGの多山分布(高原状態)
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
10 6 2.985075 2.985075
15 17 8.457711 11.442786
20 29 14.427861 25.870647
25 36 17.910448 43.781095
30 38 18.905473 62.686567
35 40 19.900498 82.587065
40 27 13.432836 96.019900
45 5 2.487562 98.507463
50 3 1.492537 100.000000
>
15名無しに影響はない(長屋):2012/06/13(水) 19:11:12.95 ID:vRnk9p6V
そろそろ、酷使しているGM管の寿命なのかもね
 
16名無しに影響はない(栃木県):2012/06/16(土) 20:32:44.72 ID:hX1TEYoh
>>15
違うみたい。
試料の測定では、ガウス分布になっていますので。
17名無しに影響はない(栃木県):2012/06/16(土) 20:38:12.74 ID:hX1TEYoh
讃岐うどんの測定値を少々。重複していたらあきらめてください。
平均値の差の検定で有意になったものをいくつかあげます。
麺しるべ 讃岐そうめん マルキン 2013.07 (25 * 8 *1.5 cm, 250g)
gr1 <- c(38, 25, 42, 33, 31, 29, 37, 28, 33, 39, 36, 30, 41, 38, 39, 31, 31, 28, 33, 27, 39, 33, 25, 37, 35, 32, 39, 43, 24, 35 ,
48, 32, 30, 26, 40, 47, 27, 39, 41, 34, 42, 32, 33, 43, 33, 46, 37, 42, 35, 25, 27, 39, 31, 53, 39, 31, 43, 37, 47, 36, 32, 36, 38, 43, 32, 37, 34, 33 ,
30, 50, 46, 45, 44, 27, 40, 34, 36, 34, 34, 47, 34, 51, 43, 53, 38, 35, 45, 34, 32, 41, 45, 36, 28, 32, 45, 39, 34, 26, 48, 51, 38, 32)
> mean(x)
[1] 36.64706
> var(x)
[1] 46.62667
gr2 <- c(52, 45, 47, 55, 35, 32, 37, 59, 39, 30, 32, 32, 43, 38, 26, 46, 39, 38, 50, 30, 33, 37, 47, 46, 38, 30, 46, 41, 52, 43, 42 ,
44, 44, 27, 33, 32, 44, 60, 38, 42, 26, 40, 31, 39, 37, 41, 32, 38, 38, 40, 50, 37, 56, 41, 35, 34, 38, 29, 40, 31, 39, 39 ,
43, 39, 41, 58, 39, 58, 40, 45, 38, 45, 26, 43, 38, 52, 54, 47, 40, 42, 49, 36, 35, 42, 32, 49, 37, 39, 53, 50, 40, 38, 35, 38, 43, 45, 58, 34, 41, 41, 63, 24, 47, 32, 29, 44, 43, 56)
> mean(x)
[1] 40.88889
> var(x)
[1] 67.89408

> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -4.0492, 自由度 = 208, P値 = 7.251e-05
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -6.307055 -2.176605
標本推定値:
平均値x 平均値y
36.64706 40.88889
有意。平均値の差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -4.0708, 自由度 = 204.586, P値 = 6.692e-05
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -6.296274 -2.187386
標本推定値:
平均値x 平均値y
36.64706 40.88889
有意。平均値の差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.6868, 第1自由度 = 101, 第2自由度 = 107, P値 = 0.05745
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.4670382 1.0120467
標本推定値:
分散比
0.6867561
有意。分散が均一ではない。(Welchの方法)を使用する
>
18名無しに影響はない(栃木県):2012/06/16(土) 20:38:32.84 ID:hX1TEYoh
BG:36.6(n=102), 試料: 40.8(n=108)
40.8-36.6=4.2
4.2 * 0.47 = 2.0 Bq

寸法が 25 * 8 *1.5 cm より、300cm3, 250g より比重 0.83 g/cm3
底面半径 6.63, 上面半径 4.14cmの台形より、半径4.14、高さ3.65mmの円柱状試料と近似して
容積 19.6cm3。19.6*0.83 = 16.3g
2.0 * 1000 / 16.3 = 122 bq/kg
19名無しに影響はない(栃木県):2012/06/16(土) 20:40:51.94 ID:hX1TEYoh
マルキン 麺しるべ 讃岐ひやむぎ 2013.09 JB (25 * 8 *1.5 cm, 250g)

gr1 <- c( 37, 50, 44, 39, 29, 35, 37, 58, 54, 33, 35, 34, 39, 38, 44, 36, 25, 40, 57, 38, 42, 37, 30, 60, 32, 34, 28, 35, 38, 40, 42, 40, 63, 39, 35, 32, 28, 42, 36, 35, 35, 38, 41, 35, 33 ,
43, 37, 41, 40, 43, 40, 34, 36, 42, 49, 38, 36, 41, 36, 48, 33, 29, 38, 34, 40, 38, 46, 30, 44, 43, 42, 49, 50, 26, 35, 24 ,
37, 51, 32, 49, 36, 40, 32, 42, 37, 27, 37, 43, 29, 37, 25, 45, 43, 39, 37, 47, 36, 36, 44, 43, 38, 35, 46, 28, 29, 35, 40, 41, 37, 36, 35, 35, 33, 31, 32, 32, 32)
gr2 <- c( 49, 36, 30, 45, 36, 39, 37, 39, 38, 43, 49, 50, 47, 51, 35, 56, 50, 32, 34, 38, 35, 25, 30, 44, 32, 28, 27, 38, 28, 43 ,
28, 38, 41, 34, 37, 38, 42, 39, 34, 38, 28, 34, 37, 32, 35, 38, 43, 42, 39, 55, 49, 39, 38, 40, 47, 55, 43, 37, 57, 49, 31)

> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -0.952, 自由度 = 176, P値 = 0.3424
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.393392 1.184901
標本推定値:
平均値x 平均値y
38.25641 39.36066
有意。試料とバックグラウントに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -0.9296, 自由度 = 114.005, P値 = 0.3546
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.457492 1.249002
標本推定値:
平均値x 平均値y
38.25641 39.36066
有意。試料とバックグラウントに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8599, 第1自由度 = 116, 第2自由度 = 60, P値 = 0.485
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5427903 1.3196563
標本推定値:
分散比
0.8598737
有意。分散が異なるので(Welchの方法)を使用する。

>

39.36066 - 38.25641 = 1.10 CPM (0.519Bq)
比重 0.85 受光深さ 0.43 cm 受光容積 8cm3(7g)
72.4 Bq/kg
20名無しに影響はない(栃木県):2012/06/16(土) 20:45:41.27 ID:hX1TEYoh
中尾食品 生活良好讃岐うどん2013.09.17D (21*11*2.1 cm, 500g)
gr1 <- c( 32, 32, 30, 43, 44, 34, 36, 42, 33, 27, 34, 41, 47, 34, 43, 50, 38, 39, 48, 41, 32, 43, 36, 40, 36, 43, 37, 27, 52, 38, 45, 47, 37, 37, 37, 44, 34, 36,
38, 43, 44, 38, 40, 40, 40, 38, 35, 45, 43, 45, 32, 38, 44, 28, 35, 54, 39, 37, 43, 38, 40, 41, 45, 32, 35, 43, 36, 23, 39, 33, 33, 38, 35, 36, 31, 30 ,
42, 46, 45, 41, 60, 38, 34, 52, 38, 46, 32, 35, 34, 47, 34, 34, 30, 40, 45, 36, 42, 34, 22, 40, 39, 49, 39, 36, 50, 40, 38, 46, 51 ,
36, 33, 36, 38, 33, 29, 33, 37, 27, 31, 35, 33, 35, 32, 49, 42, 40, 30, 36, 36, 37, 38, 29, 44, 36, 37, 41, 36, 45, 38)

gr2 <- c( 40, 31, 46, 43, 27, 40, 39, 38, 33, 43, 39, 34, 57, 44, 47, 32, 50, 45, 39, 51, 39, 34, 39, 44, 54, 33, 41, 35, 39, 40, 37 ,
40, 41, 41, 50, 30, 29, 40, 40, 41, 48, 35, 36, 36, 40, 38, 40, 46, 44, 38, 38, 33, 41, 35, 36, 39, 40, 39, 39, 35, 48, 43)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -1.6071, 自由度 = 199, P値 = 0.1096
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.3495887 0.3414661
標本推定値:
平均値x 平均値y
38.36691 39.87097
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -1.6466, 自由度 = 124.304, P値 = 0.1022
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.3119070 0.3037845
標本推定値:
平均値x 平均値y
38.36691 39.87097
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.1348, 第1自由度 = 138, 第2自由度 = 61, P値 = 0.5843
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.725469 1.712250
標本推定値:
分散比
1.134795
有意。分散が異なるので(Welchの方法)を使用する。

>

39.8 - 38.4 = 1.5 CPM (0.075 Bq)
98.37 Bq/kg
21名無しに影響はない(栃木県):2012/06/16(土) 21:01:45.08 ID:hX1TEYoh
注意点は、
β線で測定しているので、政府のγ線による測定方法とは異なる結果となっています。
政府による測定方法では、一部例外を除くと、すべてNDという結果なので、
この測定ではγ線量を0と近似しています。
食品によるβ線吸収量は、プラスチック(100円ショップで販売されていたCDケース)と同じであると近似しています。
以上の理由で、β線の発光部分を、直径5cm、深さ0.36cm(比重が1の場合)の円筒部分だけと近似しています。

これらの近似のために、政府の発表している「正確な測定値」から大きくかけ離れた結果が得られていマス。

実際には、麺類の測定の場合には、ほとんど含まれていない麺の場合には、1-2CPM程度負数にでます。
これは、試料を置いている机に付着した放射性物質が発光したβ線を麺が吸収しているためです。
これが、マイナス誤差になります。50-80Bq/kg・CPM 程度低く数値が出ている場合があります。
一人で測定していても、間違いのチェックができないので、測定器をお持ちの方による追跡調査(再調査)をお願いします。

このあたりのは内容は、本家スレ
http://uni.2ch.net/test/read.cgi/radiation/1331598144/l50
に書いておいたのですが、新スレになったので、再度指摘しています。

私の測定は、政府の決定した「正しい測定方法」とは異なります。
したがって、間違った測定値を記載しています。
22名無しに影響はない(栃木県):2012/06/17(日) 19:26:04.31 ID:8T/4cTLI
1.測定対象
「栃木県産梅の実。40度1週間乾燥 2012.06.09 採取 7.2 d-g」の分析
2.測定結果

1. n=45 糊台
x <- c( 34, 39, 37, 38, 30, 25, 36, 30, 33, 35, 31, 38, 32, 53, 39, 24, 32, 31, 35, 43, 47, 33, 33, 38, 33, 42, 33, 39, 36, 43, 38, 52, 50, 41, 31, 37, 28, 43, 26, 36, 38, 32, 29, 30, 38)

2. n=35 栃木県産梅の実。40度1週間乾燥 2012.06.09 採取 7.2 d-g
x <- c( 45, 39, 40, 48, 54, 46, 53, 32, 33, 41, 46, 37, 39, 37, 43, 30, 46, 52, 51, 41, 48, 48, 42, 48, 47, 41, 49, 47, 42, 46, 42, 40, 47, 47, 48)

3. n=33 糊台
x <- c( 32, 40, 41, 32, 49, 38, 35, 32, 39, 36, 33, 32, 44, 33, 43, 38, 35, 26, 39, 37, 31, 41, 36, 29, 36, 33, 33, 28, 33, 36, 48, 41, 41)

4. n=43 栃木県産梅の実。40度1週間乾燥 2012.06.09 採取 7.2 d-g
x <- c( 29, 50, 49, 42, 44, 44, 51, 53, 43, 45, 63, 57, 41, 46, 52, 52, 35, 45, 39, 42, 42, 39, 45, 33, 57, 42, 51, 42, 41, 47, 42, 49, 36, 44, 50, 55, 49, 43, 38, 39, 41, 45, 40)

5. n=30 糊台
x <- c( 35, 38, 35, 33, 36, 41, 36, 42, 41, 32, 33, 45, 37, 25, 44, 42, 33, 26, 41, 37, 42, 31, 29, 35, 39, 49, 23, 25, 32, 41)

以前に書いていますが、新スレになったので、一部用語の説明と測定環境を記載します。
「糊台」とは、プラスチック製CDケース内約3mmの隙間にポリ袋に入れたヤマト糊を詰めたものです。
β線をほぼ遮蔽できます(具体的数値は、本家スレ参照)。机の上に糊台を置き、糊台の上に試料を置きます。
糊台の上空3cmに測定器を置いています。
23名無しに影響はない(栃木県):2012/06/17(日) 19:27:58.00 ID:8T/4cTLI
4. データ貼り付け

全体の分析
x <- c( 34, 39, 37, 38, 30, 25, 36, 30, 33, 35, 31, 38, 32, 53, 39, 24, 32, 31, 35, 43, 47, 33, 33, 38, 33, 42, 33, 39, 36, 43, 38, 52, 50, 41, 31, 37, 28, 43, 26, 36, 38, 32, 29, 30, 38 ,
45, 39, 40, 48, 54, 46, 53, 32, 33, 41, 46, 37, 39, 37, 43, 30, 46, 52, 51, 41, 48, 48, 42, 48, 47, 41, 49, 47, 42, 46, 42, 40, 47, 47, 48 ,
32, 40, 41, 32, 49, 38, 35, 32, 39, 36, 33, 32, 44, 33, 43, 38, 35, 26, 39, 37, 31, 41, 36, 29, 36, 33, 33, 28, 33, 36, 48, 41, 41 ,
29, 50, 49, 42, 44, 44, 51, 53, 43, 45, 63, 57, 41, 46, 52, 52, 35, 45, 39, 42, 42, 39, 45, 33, 57, 42, 51, 42, 41, 47, 42, 49, 36, 44, 50, 55, 49, 43, 38, 39, 41, 45, 40 ,
35, 38, 35, 33, 36, 41, 36, 42, 41, 32, 33, 45, 37, 25, 44, 42, 33, 26, 41, 37, 42, 31, 29, 35, 39, 49, 23, 25, 32, 41)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 39.60215
> var(x)
[1] 55.23545
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 20.4532, 第1自由度 = 4, 第2自由度 = 181, P値 = 6.41e-14
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.5824, 自由度 = 4, P値 = 0.63
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 19.8098, 第1自由度 = 4.000, 第2自由度 = 87.738, P値 = 1.199e-11
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.0752688 1.075269
25 12 6.4516129 7.526882
30 35 18.8172043 26.344086
35 46 24.7311828 51.075269
40 44 23.6559140 74.731183
45 29 15.5913978 90.322581
50 14 7.5268817 97.849462
55 3 1.6129032 99.462366
60 1 0.5376344 100.000000
>
24名無しに影響はない(栃木県):2012/06/17(日) 19:28:34.73 ID:8T/4cTLI
BGと試料の比較
x <- c( 34, 39, 37, 38, 30, 25, 36, 30, 33, 35, 31, 38, 32, 53, 39, 24, 32, 31, 35, 43, 47, 33, 33, 38, 33, 42, 33, 39, 36, 43, 38, 52, 50, 41, 31, 37, 28, 43, 26, 36, 38, 32, 29, 30, 38 ,
45, 39, 40, 48, 54, 46, 53, 32, 33, 41, 46, 37, 39, 37, 43, 30, 46, 52, 51, 41, 48, 48, 42, 48, 47, 41, 49, 47, 42, 46, 42, 40, 47, 47, 48 ,
32, 40, 41, 32, 49, 38, 35, 32, 39, 36, 33, 32, 44, 33, 43, 38, 35, 26, 39, 37, 31, 41, 36, 29, 36, 33, 33, 28, 33, 36, 48, 41, 41 ,
29, 50, 49, 42, 44, 44, 51, 53, 43, 45, 63, 57, 41, 46, 52, 52, 35, 45, 39, 42, 42, 39, 45, 33, 57, 42, 51, 42, 41, 47, 42, 49, 36, 44, 50, 55, 49, 43, 38, 39, 41, 45, 40 ,
35, 38, 35, 33, 36, 41, 36, 42, 41, 32, 33, 45, 37, 25, 44, 42, 33, 26, 41, 37, 42, 31, 29, 35, 39, 49, 23, 25, 32, 41)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 82.1997, 第1自由度 = 1, 第2自由度 = 184, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.1141, 自由度 = 1, P値 = 0.7355
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 81.2529, 第1自由度 = 1.000, 第2自由度 = 162.495, P値 = 5.267e-16
有意。試料とバックグラウンドに差異がある。

>
25名無しに影響はない(栃木県):2012/06/17(日) 19:30:06.59 ID:8T/4cTLI
繰り返しによる影響

1. n = 108 BG 繰り返し数 =3
x <- c( 34, 39, 37, 38, 30, 25, 36, 30, 33, 35, 31, 38, 32, 53, 39, 24, 32, 31, 35, 43, 47, 33, 33, 38, 33, 42, 33, 39, 36, 43, 38, 52, 50, 41, 31, 37, 28, 43, 26, 36, 38, 32, 29, 30, 38 ,
32, 40, 41, 32, 49, 38, 35, 32, 39, 36, 33, 32, 44, 33, 43, 38, 35, 26, 39, 37, 31, 41, 36, 29, 36, 33, 33, 28, 33, 36, 48, 41, 41 ,
35, 38, 35, 33, 36, 41, 36, 42, 41, 32, 33, 45, 37, 25, 44, 42, 33, 26, 41, 37, 42, 31, 29, 35, 39, 49, 23, 25, 32, 41)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 36.10185
> var(x)
[1] 37.23252
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0448, 第1自由度 = 2, 第2自由度 = 105, P値 = 0.9562
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.5702, 自由度 = 2, P値 = 0.4561
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0513, 第1自由度 = 2.000, 第2自由度 = 66.148, P値 = 0.95
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.851852 1.851852
25 11 10.185185 12.037037
30 31 28.703704 40.740741
35 36 33.333333 74.074074
40 20 18.518519 92.592593
45 5 4.629630 97.222222
50 3 2.777778 100.000000
>
26名無しに影響はない(栃木県):2012/06/17(日) 19:31:33.84 ID:8T/4cTLI
2. n = 78 栃木県産梅の実。40度1週間乾燥 2012.06.09 採取 7.2 d-g 繰り返し数 =2
x <- c( 45, 39, 40, 48, 54, 46, 53, 32, 33, 41, 46, 37, 39, 37, 43, 30, 46, 52, 51, 41, 48, 48, 42, 48, 47, 41, 49, 47, 42, 46, 42, 40, 47, 47, 48 ,
29, 50, 49, 42, 44, 44, 51, 53, 43, 45, 63, 57, 41, 46, 52, 52, 35, 45, 39, 42, 42, 39, 45, 33, 57, 42, 51, 42, 41, 47, 42, 49, 36, 44, 50, 55, 49, 43, 38, 39, 41, 45, 40)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 44.44872
> var(x)
[1] 39.99084
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.5524, 第1自由度 = 1, 第2自由度 = 76, P値 = 0.4596
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.9307, 自由度 = 1, P値 = 0.3347
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.5708, 第1自由度 = 1.000, 第2自由度 = 75.819, P値 = 0.4523
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 1 1.282051 1.282051
30 4 5.128205 6.410256
35 10 12.820513 19.230769
40 24 30.769231 50.000000
45 24 30.769231 80.769231
50 11 14.102564 94.871795
55 3 3.846154 98.717949
60 1 1.282051 100.000000
>
27名無しに影響はない(栃木県):2012/06/17(日) 19:32:24.48 ID:8T/4cTLI
BGと試料の比較

1. n = 108 BG 繰り返し数 =3
gr1 <- c( 34, 39, 37, 38, 30, 25, 36, 30, 33, 35, 31, 38, 32, 53, 39, 24, 32, 31, 35, 43, 47, 33, 33, 38, 33, 42, 33, 39, 36, 43, 38, 52, 50, 41, 31, 37, 28, 43, 26, 36, 38, 32, 29, 30, 38 ,
32, 40, 41, 32, 49, 38, 35, 32, 39, 36, 33, 32, 44, 33, 43, 38, 35, 26, 39, 37, 31, 41, 36, 29, 36, 33, 33, 28, 33, 36, 48, 41, 41 ,
35, 38, 35, 33, 36, 41, 36, 42, 41, 32, 33, 45, 37, 25, 44, 42, 33, 26, 41, 37, 42, 31, 29, 35, 39, 49, 23, 25, 32, 41)

2. n = 78 栃木県産梅の実。40度1週間乾燥 2012.06.09 採取 7.2 d-g 繰り返し数 =2
gr2 <- c( 45, 39, 40, 48, 54, 46, 53, 32, 33, 41, 46, 37, 39, 37, 43, 30, 46, 52, 51, 41, 48, 48, 42, 48, 47, 41, 49, 47, 42, 46, 42, 40, 47, 47, 48 ,
29, 50, 49, 42, 44, 44, 51, 53, 43, 45, 63, 57, 41, 46, 52, 52, 35, 45, 39, 42, 42, 39, 45, 33, 57, 42, 51, 42, 41, 47, 42, 49, 36, 44, 50, 55, 49, 43, 38, 39, 41, 45, 40)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -9.0664, 自由度 = 184, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -10.163228 -6.530504
標本推定値:
平均値x 平均値y
36.10185 44.44872
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -9.014, 自由度 = 162.495, P値 = 5.267e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -10.17538 -6.51835
標本推定値:
平均値x 平均値y
36.10185 44.44872
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.931, 第1自由度 = 107, 第2自由度 = 77, P値 = 0.7268
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.6092303 1.4025439
標本推定値:
分散比
0.9310261
有意。分散が異なるので(Welchの方法)を使用する。

>
28名無しに影響はない(栃木県):2012/06/17(日) 19:34:20.08 ID:8T/4cTLI
3.補足コメント
44.44872 - 36.10185 = 8.34687 CPM (3.92 Bq)
3.92 * 1000 / 7.2 = 544 Bq/乾kg
544 * (100-90.1) / 100 = 53.8 Bq/湿kg

水分 90.1% ( http://www.tukeru.com/knowledge/knowledge_51.htm )
カリウム 290mg/100g ( http://www.tukeru.com/knowledge/knowledge_51.htm )より8.96Bq/kg

「乾kg」は、試料を乾燥した状態で計った質量
「湿kg」は、試料を濡れたまま(乾燥しないで)測った質量
です。
29名無しに影響はない(栃木県):2012/06/17(日) 20:23:52.24 ID:8T/4cTLI
1.測定対象
「2012.06.12取得 栃木県産2条大麦(ビール麦)の穂 40度3日乾燥 5.5g」の分析

2.測定結果
1. n=30 糊台
x <- c( 44, 39, 42, 49, 36, 40, 36, 45, 45, 49, 32, 35, 38, 29, 39, 27, 34, 30, 38, 45, 33, 40, 35, 38, 33, 40, 44, 25, 29, 33)

2. n=35 2012.06.12取得 栃木県産2条大麦 40度3日乾燥 5.5g
x <- c( 42, 33, 43, 39, 67, 38, 29, 46, 41, 50, 25, 58, 44, 51, 44, 32, 49, 47, 44, 38, 38, 40, 44, 32, 37, 35, 45, 36, 30, 52, 32, 45, 43, 40, 40)

3. n=30 糊台
x <- c( 39, 33, 44, 39, 46, 32, 31, 23, 42, 50, 32, 28, 31, 33, 33, 41, 38, 42, 29, 46, 40, 36, 31, 30, 32, 39, 36, 41, 46, 39)

4. n=31 2012.06.12取得 栃木県産2条大麦 40度3日乾燥 5.5g
x <- c( 41, 48, 36, 34, 46, 40, 48, 48, 36, 45, 35, 44, 47, 54, 40, 33, 33, 51, 39, 38, 48, 43, 42, 37, 34, 39, 43, 44, 44, 40, 50)

5. n=37 糊台
x <- c( 45, 42, 42, 39, 38, 32, 41, 44, 43, 35, 44, 44, 50, 32, 41, 32, 36, 38, 38, 40, 25, 42, 39, 39, 37, 44, 37, 35, 49, 35, 38, 44, 37, 44, 32, 34, 34)
30名無しに影響はない(栃木県):2012/06/17(日) 20:30:38.67 ID:8T/4cTLI
4. データ貼り付け
全体の分析
x <- c( 44, 39, 42, 49, 36, 40, 36, 45, 45, 49, 32, 35, 38, 29, 39, 27, 34, 30, 38, 45, 33, 40, 35, 38, 33, 40, 44, 25, 29, 33 ,
42, 33, 43, 39, 67, 38, 29, 46, 41, 50, 25, 58, 44, 51, 44, 32, 49, 47, 44, 38, 38, 40, 44, 32, 37, 35, 45, 36, 30, 52, 32, 45, 43, 40, 40 ,
39, 33, 44, 39, 46, 32, 31, 23, 42, 50, 32, 28, 31, 33, 33, 41, 38, 42, 29, 46, 40, 36, 31, 30, 32, 39, 36, 41, 46, 39 ,
41, 48, 36, 34, 46, 40, 48, 48, 36, 45, 35, 44, 47, 54, 40, 33, 33, 51, 39, 38, 48, 43, 42, 37, 34, 39, 43, 44, 44, 40, 50 ,
45, 42, 42, 39, 38, 32, 41, 44, 43, 35, 44, 44, 50, 32, 41, 32, 36, 38, 38, 40, 25, 42, 39, 39, 37, 44, 37, 35, 49, 35, 38, 44, 37, 44, 32, 34, 34)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 39.34969
> var(x)
[1] 45.52511
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.0109, 第1自由度 = 4, 第2自由度 = 158, P値 = 0.003982
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 9.3414, 自由度 = 4, P値 = 0.05311
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 4.0168, 第1自由度 = 4.000, 第2自由度 = 77.405, P値 = 0.005171
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.6134969 0.6134969
25 9 5.5214724 6.1349693
30 31 19.0184049 25.1533742
35 44 26.9938650 52.1472393
40 46 28.2208589 80.3680982
45 22 13.4969325 93.8650307
50 8 4.9079755 98.7730061
55 1 0.6134969 99.3865031
60 0 0.0000000 99.3865031
65 1 0.6134969 100.0000000
>
31名無しに影響はない(栃木県):2012/06/17(日) 20:33:05.50 ID:8T/4cTLI
BGと試料の比較
x <- c( 44, 39, 42, 49, 36, 40, 36, 45, 45, 49, 32, 35, 38, 29, 39, 27, 34, 30, 38, 45, 33, 40, 35, 38, 33, 40, 44, 25, 29, 33 ,
42, 33, 43, 39, 67, 38, 29, 46, 41, 50, 25, 58, 44, 51, 44, 32, 49, 47, 44, 38, 38, 40, 44, 32, 37, 35, 45, 36, 30, 52, 32, 45, 43, 40, 40 ,
39, 33, 44, 39, 46, 32, 31, 23, 42, 50, 32, 28, 31, 33, 33, 41, 38, 42, 29, 46, 40, 36, 31, 30, 32, 39, 36, 41, 46, 39 ,
41, 48, 36, 34, 46, 40, 48, 48, 36, 45, 35, 44, 47, 54, 40, 33, 33, 51, 39, 38, 48, 43, 42, 37, 34, 39, 43, 44, 44, 40, 50 ,
45, 42, 42, 39, 38, 32, 41, 44, 43, 35, 44, 44, 50, 32, 41, 32, 36, 38, 38, 40, 25, 42, 39, 39, 37, 44, 37, 35, 49, 35, 38, 44, 37, 44, 32, 34, 34)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 13.9387, 第1自由度 = 1, 第2自由度 = 161, P値 = 0.0002616
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.9229, 自由度 = 1, P値 = 0.08733
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 12.9573, 第1自由度 = 1.000, 第2自由度 = 121.443, P値 = 0.0004624
有意。試料とバックグラウンドに差異がある。

>
32名無しに影響はない(栃木県):2012/06/17(日) 20:34:40.54 ID:8T/4cTLI
繰り返しによる影響

1. n = 97 BG 繰り返し数 =3
x <- c( 44, 39, 42, 49, 36, 40, 36, 45, 45, 49, 32, 35, 38, 29, 39, 27, 34, 30, 38, 45, 33, 40, 35, 38, 33, 40, 44, 25, 29, 33 ,
39, 33, 44, 39, 46, 32, 31, 23, 42, 50, 32, 28, 31, 33, 33, 41, 38, 42, 29, 46, 40, 36, 31, 30, 32, 39, 36, 41, 46, 39 ,
45, 42, 42, 39, 38, 32, 41, 44, 43, 35, 44, 44, 50, 32, 41, 32, 36, 38, 38, 40, 25, 42, 39, 39, 37, 44, 37, 35, 49, 35, 38, 44, 37, 44, 32, 34, 34)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 37.78351
> var(x)
[1] 35.42139
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.2413, 第1自由度 = 2, 第2自由度 = 94, P値 = 0.2937
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.691, 自由度 = 2, P値 = 0.4293
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.3185, 第1自由度 = 2.000, 第2自由度 = 58.927, P値 = 0.2753
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.030928 1.030928
25 7 7.216495 8.247423
30 22 22.680412 30.927835
35 30 30.927835 61.855670
40 25 25.773196 87.628866
45 10 10.309278 97.938144
50 2 2.061856 100.000000
>
33名無しに影響はない(栃木県):2012/06/17(日) 20:35:49.27 ID:8T/4cTLI
2. n = 66 2012.06.12取得 栃木県産2条大麦 40度3日乾燥 5.5g 繰り返し数 =2
x <- c( 42, 33, 43, 39, 67, 38, 29, 46, 41, 50, 25, 58, 44, 51, 44, 32, 49, 47, 44, 38, 38, 40, 44, 32, 37, 35, 45, 36, 30, 52, 32, 45, 43, 40, 40 ,
41, 48, 36, 34, 46, 40, 48, 48, 36, 45, 35, 44, 47, 54, 40, 33, 33, 51, 39, 38, 48, 43, 42, 37, 34, 39, 43, 44, 44, 40, 50)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 41.65152
> var(x)
[1] 52.10746
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0892, 第1自由度 = 1, 第2自由度 = 64, P値 = 0.7662
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 4.4903, 自由度 = 1, P値 = 0.03409
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0933, 第1自由度 = 1.000, 第2自由度 = 60.174, P値 = 0.761
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 2 3.030303 3.030303
30 9 13.636364 16.666667
35 14 21.212121 37.878788
40 21 31.818182 69.696970
45 12 18.181818 87.878788
50 6 9.090909 96.969697
55 1 1.515152 98.484848
60 0 0.000000 98.484848
65 1 1.515152 100.000000
>
34名無しに影響はない(栃木県):2012/06/17(日) 20:36:42.00 ID:8T/4cTLI
BGと試料の比較

1. n = 97 BG 繰り返し数 =3
gr1 <- c( 44, 39, 42, 49, 36, 40, 36, 45, 45, 49, 32, 35, 38, 29, 39, 27, 34, 30, 38, 45, 33, 40, 35, 38, 33, 40, 44, 25, 29, 33 ,
39, 33, 44, 39, 46, 32, 31, 23, 42, 50, 32, 28, 31, 33, 33, 41, 38, 42, 29, 46, 40, 36, 31, 30, 32, 39, 36, 41, 46, 39 ,
45, 42, 42, 39, 38, 32, 41, 44, 43, 35, 44, 44, 50, 32, 41, 32, 36, 38, 38, 40, 25, 42, 39, 39, 37, 44, 37, 35, 49, 35, 38, 44, 37, 44, 32, 34, 34)

2. n = 66 2012.06.12取得 栃木県産2条大麦 40度3日乾燥 5.5g 繰り返し数 =2
gr2 <- c( 42, 33, 43, 39, 67, 38, 29, 46, 41, 50, 25, 58, 44, 51, 44, 32, 49, 47, 44, 38, 38, 40, 44, 32, 37, 35, 45, 36, 30, 52, 32, 45, 43, 40, 40 ,
41, 48, 36, 34, 46, 40, 48, 48, 36, 45, 35, 44, 47, 54, 40, 33, 33, 51, 39, 38, 48, 43, 42, 37, 34, 39, 43, 44, 44, 40, 50)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -3.7335, 自由度 = 161, P値 = 0.0002616
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -5.913988 -1.822032
標本推定値:
平均値x 平均値y
37.78351 41.65152
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -3.5996, 自由度 = 121.443, P値 = 0.0004624
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -5.995304 -1.740716
標本推定値:
平均値x 平均値y
37.78351 41.65152
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.6798, 第1自由度 = 96, 第2自由度 = 65, P値 = 0.08463
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.4298163 1.0542413
標本推定値:
分散比
0.6797758
有意。分散が異なるので(Welchの方法)を使用する。

>
35名無しに影響はない(栃木県):2012/06/17(日) 20:38:43.93 ID:8T/4cTLI
3.補足コメント
41.65152 - 37.78351 = 3.868011 CPM (1.81 Bq)
1.81 * 1000 / 5.5 = 330 Bq/kg

測定は、麦穂のヒゲと茎をハサミで除いた残りです。
脱穀していません。
36名無しに影響はない(栃木県):2012/06/17(日) 22:11:59.50 ID:8T/4cTLI
1.測定対象
「2012.06.04 採取 栃木県産柏の葉、40度3日乾燥」の分析
乾燥後 7g (湿重量不明)

2.測定結果
BGと試料の比較

1. n = 182 BG 繰り返し数 =3
gr1 <- c( 38, 44, 45, 36, 40, 35, 31, 39, 39, 51, 38, 34, 47, 36, 40, 33, 41, 46, 46, 42, 31, 37,
41, 31, 38, 39, 32, 31, 39, 37, 45, 33, 37, 26, 33, 42, 35, 48, 35, 35, 35, 37, 38, 39, 53, 45, 37, 49, 39, 37, 35, 45, 43 ,
39, 37, 45, 33, 35, 34, 34, 34, 45, 49, 25, 36, 47, 41, 35, 31, 40, 37, 35, 32, 42, 45, 38, 39, 30, 37, 41, 35, 32, 37, 40,
29, 37, 33, 36, 42, 43, 30, 36, 42, 31, 31, 46, 39, 43, 34, 37, 43, 45, 31, 38 ,
51, 32, 31, 38, 35, 35, 35, 26, 42, 38, 41, 29, 37, 45, 35, 78, 49, 39, 44, 29, 39, 32, 29, 48, 33, 31, 38, 31, 38, 38, 47,
32, 38, 41, 34, 39, 36, 41, 25, 30, 43, 41, 28, 42, 36, 41, 31, 39, 43, 41, 40, 39, 27, 38, 41, 33, 58, 35, 33, 35, 34, 26,
36, 47, 47, 49, 34, 50, 36, 31, 38, 39, 38, 44, 48, 37, 42, 19)

2. n = 85 2012.06.04 採取 栃木県産柏の葉、40度3日乾燥 繰り返し数 =2
gr2 <- c( 40, 41, 39, 41, 40, 47, 35, 49, 49, 41, 48, 33, 53, 42, 32, 40, 49, 43, 46, 46, 47, 44, 37, 44, 48, 48, 47, 31, 44, 49, 52, 49, 44, 45, 31 ,
42, 47, 45, 35, 48, 50, 49, 27, 43, 52, 52, 35, 37, 39, 50, 39, 50, 55, 35, 37, 51, 44, 56, 43, 45, 52, 47, 38, 36, 49, 43,
42, 39, 36, 49, 42, 54, 41, 43, 39, 55, 41, 51, 56, 39, 43, 42, 31, 50, 51)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -6.5873, 自由度 = 265, P値 = 2.399e-10
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -7.511122 -4.054230
標本推定値:
平均値x 平均値y
38.08791 43.87059
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -6.6876, 自由度 = 170.496, P値 = 3.113e-10
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -7.489556 -4.075796
標本推定値:
平均値x 平均値y
38.08791 43.87059
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.0864, 第1自由度 = 181, 第2自由度 = 84, P値 = 0.676
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.742599 1.550040
標本推定値:
分散比
1.086400
有意。分散が異なるので(Welchの方法)を使用する

>
37名無しに影響はない(栃木県):2012/06/17(日) 22:12:55.09 ID:8T/4cTLI
行数がうまく制限内にまとめられず、最後の結果だけです。

3.補足コメント
43.9 - 38.1 = 5.8 CPM (2.71 Bq)
5.8 * 1000 / 7 = 388 Bq/kg
旧暦の4月15日、月遅れ(明治の暦の切り替えで12月を4−5日で終わりにして1月にしました。その関係で、1月遅れという暦を使っているときがあります)
の端午の節句の前日に、柏の葉を収穫してみました。
38名無しに影響はない(栃木県):2012/06/18(月) 20:28:56.80 ID:OIITtu7X
1.測定対象
「2012.06.12 収穫 栃木県産シュンギク 40度6日乾燥4.2g」の分析

2.測定結果
1. n=30 糊台
x <- c( 37, 33, 34, 27, 33, 39, 42, 47, 42, 28, 50, 39, 35, 28, 29, 33, 36, 37, 48, 48, 37, 34, 41, 40, 36, 25, 43, 52, 22, 24)

2. n=35 2012.06.12 収穫 栃木県産シュンギク 40度6日乾燥4.2g
x <- c( 64, 69, 68, 77, 64, 66, 92, 63, 65, 57, 70, 61, 67, 83, 70, 60, 73, 66, 53, 66, 74, 67, 62, 52, 68, 71, 56, 77, 53, 65, 42, 21, 29, 58, 51)

3. n=30 糊台
x <- c( 42, 33, 27, 33, 48, 46, 30, 31, 41, 33, 34, 47, 38, 34, 38, 29, 42, 40, 47, 46, 36, 33, 29, 36, 36, 29, 32, 41, 31, 40)

4. n=77 2012.06.12 収穫 栃木県産シュンギク 40度6日乾燥4.2g
x <- c( 76, 58, 63, 53, 61, 64, 73, 64, 57, 68, 72, 67, 54, 70, 72, 77, 63, 66, 76, 69, 63, 68, 64, 61, 63, 68, 53, 74, 53, 56, 51, 54, 61, 64, 73,
71, 73, 57, 64, 56, 57, 67, 62, 66, 60, 70, 74, 64, 56, 69, 64, 65, 54, 61, 71, 61, 68, 63, 70, 51, 56, 61, 53, 65, 53, 72, 76, 61, 64, 49, 65, 67, 57, 58, 65, 57, 72)

5. n=60 糊台
x <- c( 25, 35, 33, 44, 40, 39, 39, 34, 39, 39, 32, 53, 45, 47, 30, 27, 39, 40, 51, 34, 35, 32, 38, 41, 41, 26, 36, 31, 35, 36, 41, 25, 39, 44, 36,
47, 40, 44, 19, 23, 33, 37, 37, 28, 33, 40, 28, 37, 35, 33, 44, 21, 32, 40, 28, 42, 29, 34, 33, 39)
39名無しに影響はない(栃木県):2012/06/18(月) 20:29:42.40 ID:OIITtu7X
4. データ貼り付け
全体の分析
x <- c( 37, 33, 34, 27, 33, 39, 42, 47, 42, 28, 50, 39, 35, 28, 29, 33, 36, 37, 48, 48, 37, 34, 41, 40, 36, 25, 43, 52, 22, 24 ,
64, 69, 68, 77, 64, 66, 92, 63, 65, 57, 70, 61, 67, 83, 70, 60, 73, 66, 53, 66, 74, 67, 62, 52, 68, 71, 56, 77, 53, 65, 42, 21, 29, 58, 51 ,
42, 33, 27, 33, 48, 46, 30, 31, 41, 33, 34, 47, 38, 34, 38, 29, 42, 40, 47, 46, 36, 33, 29, 36, 36, 29, 32, 41, 31, 40 ,
76, 58, 63, 53, 61, 64, 73, 64, 57, 68, 72, 67, 54, 70, 72, 77, 63, 66, 76, 69, 63, 68, 64, 61, 63, 68, 53, 74, 53, 56, 51, 54, 61, 64, 73,
71, 73, 57, 64, 56, 57, 67, 62, 66, 60, 70, 74, 64, 56, 69, 64, 65, 54, 61, 71, 61, 68, 63, 70, 51, 56, 61, 53, 65, 53, 72, 76, 61, 64, 49, 65, 67, 57, 58, 65, 57, 72 ,
25, 35, 33, 44, 40, 39, 39, 34, 39, 39, 32, 53, 45, 47, 30, 27, 39, 40, 51, 34, 35, 32, 38, 41, 41, 26, 36, 31, 35, 36, 41, 25, 39, 44, 36,
47, 40, 44, 19, 23, 33, 37, 37, 28, 33, 40, 28, 37, 35, 33, 44, 21, 32, 40, 28, 42, 29, 34, 33, 39)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 49.36207
> var(x)
[1] 251.0285
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 153.4311, 第1自由度 = 4, 第2自由度 = 227, P値 < 2.2e-16
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 33.0742, 自由度 = 4, P値 = 1.153e-06
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 185.5496, 第1自由度 = 4.000, 第2自由度 = 88.321, P値 < 2.2e-16
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
15 1 0.4310345 0.4310345
20 5 2.1551724 2.5862069
25 18 7.7586207 10.3448276
30 28 12.0689655 22.4137931
35 31 13.3620690 35.7758621
40 25 10.7758621 46.5517241
45 12 5.1724138 51.7241379
50 18 7.7586207 59.4827586
55 14 6.0344828 65.5172414
60 28 12.0689655 77.5862069
65 25 10.7758621 88.3620690
70 19 8.1896552 96.5517241
75 6 2.5862069 99.1379310
80 1 0.4310345 99.5689655
85 0 0.0000000 99.5689655
90 1 0.4310345 100.0000000
>
40名無しに影響はない(栃木県):2012/06/18(月) 20:30:41.68 ID:OIITtu7X
BGと試料の比較
x <- c( 37, 33, 34, 27, 33, 39, 42, 47, 42, 28, 50, 39, 35, 28, 29, 33, 36, 37, 48, 48, 37, 34, 41, 40, 36, 25, 43, 52, 22, 24 ,
64, 69, 68, 77, 64, 66, 92, 63, 65, 57, 70, 61, 67, 83, 70, 60, 73, 66, 53, 66, 74, 67, 62, 52, 68, 71, 56, 77, 53, 65, 42, 21, 29, 58, 51 ,
42, 33, 27, 33, 48, 46, 30, 31, 41, 33, 34, 47, 38, 34, 38, 29, 42, 40, 47, 46, 36, 33, 29, 36, 36, 29, 32, 41, 31, 40 ,
76, 58, 63, 53, 61, 64, 73, 64, 57, 68, 72, 67, 54, 70, 72, 77, 63, 66, 76, 69, 63, 68, 64, 61, 63, 68, 53, 74, 53, 56, 51, 54, 61, 64, 73,
71, 73, 57, 64, 56, 57, 67, 62, 66, 60, 70, 74, 64, 56, 69, 64, 65, 54, 61, 71, 61, 68, 63, 70, 51, 56, 61, 53, 65, 53, 72, 76, 61, 64, 49, 65, 67, 57, 58, 65, 57, 72 ,
25, 35, 33, 44, 40, 39, 39, 34, 39, 39, 32, 53, 45, 47, 30, 27, 39, 40, 51, 34, 35, 32, 38, 41, 41, 26, 36, 31, 35, 36, 41, 25, 39, 44, 36,
47, 40, 44, 19, 23, 33, 37, 37, 28, 33, 40, 28, 37, 35, 33, 44, 21, 32, 40, 28, 42, 29, 34, 33, 39)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 620.3081, 第1自由度 = 1, 第2自由度 = 230, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 10.4909, 自由度 = 1, P値 = 0.001200
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 607.7574, 第1自由度 = 1.00, 第2自由度 = 203.45, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

>
41名無しに影響はない(栃木県):2012/06/18(月) 20:31:42.20 ID:OIITtu7X
繰り返しによる影響

1. n = 120 BG 繰り返し数 =3
x <- c( 37, 33, 34, 27, 33, 39, 42, 47, 42, 28, 50, 39, 35, 28, 29, 33, 36, 37, 48, 48, 37, 34, 41, 40, 36, 25, 43, 52, 22, 24 ,
42, 33, 27, 33, 48, 46, 30, 31, 41, 33, 34, 47, 38, 34, 38, 29, 42, 40, 47, 46, 36, 33, 29, 36, 36, 29, 32, 41, 31, 40 ,
25, 35, 33, 44, 40, 39, 39, 34, 39, 39, 32, 53, 45, 47, 30, 27, 39, 40, 51, 34, 35, 32, 38, 41, 41, 26, 36, 31, 35, 36, 41, 25,
39, 44, 36, 47, 40, 44, 19, 23, 33, 37, 37, 28, 33, 40, 28, 37, 35, 33, 44, 21, 32, 40, 28, 42, 29, 34, 33, 39)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 36.31667
> var(x)
[1] 48.57115
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.1653, 第1自由度 = 2, 第2自由度 = 117, P値 = 0.8479
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.6416, 自由度 = 2, P値 = 0.4401
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.1735, 第1自由度 = 2.000, 第2自由度 = 62.018, P値 = 0.841
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
15 1 0.8333333 0.8333333
20 4 3.3333333 4.1666667
25 17 14.1666667 18.3333333
30 28 23.3333333 41.6666667
35 31 25.8333333 67.5000000
40 24 20.0000000 87.5000000
45 11 9.1666667 96.6666667
50 4 3.3333333 100.0000000
>
42名無しに影響はない(栃木県):2012/06/18(月) 20:32:44.56 ID:OIITtu7X
2. n = 112 2012.06.12 収穫 栃木県産シュンギク 40度6日乾燥4.2g 繰り返し数 =2
x <- c( 64, 69, 68, 77, 64, 66, 92, 63, 65, 57, 70, 61, 67, 83, 70, 60, 73, 66, 53, 66, 74, 67, 62, 52, 68, 71, 56, 77, 53, 65, 42, 21, 29, 58, 51 ,
76, 58, 63, 53, 61, 64, 73, 64, 57, 68, 72, 67, 54, 70, 72, 77, 63, 66, 76, 69, 63, 68, 64, 61, 63, 68, 53, 74, 53, 56, 51, 54, 61, 64, 73, 71, 73,
57, 64, 56, 57, 67, 62, 66, 60, 70, 74, 64, 56, 69, 64, 65, 54, 61, 71, 61, 68, 63, 70, 51, 56, 61, 53, 65, 53, 72, 76, 61, 64, 49, 65, 67, 57, 58, 65, 57, 72)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 63.33929
> var(x)
[1] 89.2352
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.1316, 第1自由度 = 1, 第2自由度 = 110, P値 = 0.7175
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 21.3325, 自由度 = 1, P値 = 3.861e-06
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.085, 第1自由度 = 1.000, 第2自由度 = 42.758, P値 = 0.772
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.8928571 0.8928571
25 1 0.8928571 1.7857143
30 0 0.0000000 1.7857143
35 0 0.0000000 1.7857143
40 1 0.8928571 2.6785714
45 1 0.8928571 3.5714286
50 14 12.5000000 16.0714286
55 14 12.5000000 28.5714286
60 28 25.0000000 53.5714286
65 25 22.3214286 75.8928571
70 19 16.9642857 92.8571429
75 6 5.3571429 98.2142857
80 1 0.8928571 99.1071429
85 0 0.0000000 99.1071429
90 1 0.8928571 100.0000000
>
43名無しに影響はない(栃木県):2012/06/18(月) 20:33:41.55 ID:OIITtu7X
BGと試料の比較

1. n = 120 BG 繰り返し数 =3
gr1 <- c( 37, 33, 34, 27, 33, 39, 42, 47, 42, 28, 50, 39, 35, 28, 29, 33, 36, 37, 48, 48, 37, 34, 41, 40, 36, 25, 43, 52, 22, 24 ,
42, 33, 27, 33, 48, 46, 30, 31, 41, 33, 34, 47, 38, 34, 38, 29, 42, 40, 47, 46, 36, 33, 29, 36, 36, 29, 32, 41, 31, 40 ,
25, 35, 33, 44, 40, 39, 39, 34, 39, 39, 32, 53, 45, 47, 30, 27, 39, 40, 51, 34, 35, 32, 38, 41, 41, 26, 36, 31, 35, 36, 41, 25,
39, 44, 36, 47, 40, 44, 19, 23, 33, 37, 37, 28, 33, 40, 28, 37, 35, 33, 44, 21, 32, 40, 28, 42, 29, 34, 33, 39)

2. n = 112 2012.06.12 収穫 栃木県産シュンギク 40度6日乾燥4.2g 繰り返し数 =2
gr2 <- c( 64, 69, 68, 77, 64, 66, 92, 63, 65, 57, 70, 61, 67, 83, 70, 60, 73, 66, 53, 66, 74, 67, 62, 52, 68, 71, 56, 77, 53, 65, 42, 21, 29, 58, 51 ,
76, 58, 63, 53, 61, 64, 73, 64, 57, 68, 72, 67, 54, 70, 72, 77, 63, 66, 76, 69, 63, 68, 64, 61, 63, 68, 53, 74, 53, 56, 51, 54, 61, 64, 73, 71, 73, 57,
64, 56, 57, 67, 62, 66, 60, 70, 74, 64, 56, 69, 64, 65, 54, 61, 71, 61, 68, 63, 70, 51, 56, 61, 53, 65, 53, 72, 76, 61, 64, 49, 65, 67, 57, 58, 65, 57, 72)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -24.906, 自由度 = 230, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -29.16040 -24.88484
標本推定値:
平均値x 平均値y
36.31667 63.33929
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -24.6527, 自由度 = 203.45, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -29.18385 -24.86139
標本推定値:
平均値x 平均値y
36.31667 63.33929
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.5443, 第1自由度 = 119, 第2自由度 = 111, P値 = 0.001190
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3764331 0.7851696
標本推定値:
分散比
0.5443048
有意。分散が異なるので(Welchの方法)を使用する。

>
44名無しに影響はない(栃木県):2012/06/18(月) 20:34:58.42 ID:OIITtu7X
3.補足コメント
63.33929 - 36.31667 = 27.02262 CPM (12.7 Bq)
12.7 * 1000 / 4.2 = 3023 Bq/kg
水分 91.8% ( http://ja.wikipedia.org/wiki/%E3%82%B7%E3%83%A5%E3%83%B3%E3%82%AE%E3%82%AF )より
3023 * (100-91.8) /100 = 248 Bq/kg
カリウム 460mg/100g ( http://ja.wikipedia.org/wiki/%E3%82%B7%E3%83%A5%E3%83%B3%E3%82%AE%E3%82%AF )より 14.2 Bq/kg なので、ほとんど福島由来と考えられる。

このシュンギクは販売用ではありません。
自家消費を目的に栽培したものです。
45名無しに影響はない(やわらか銀行):2012/06/24(日) 22:59:01.49 ID:VEJqidty
栃木県は、土がかなり汚染していますね。
肥料や土が汚染していると、九州や四国で作った野菜も汚染します。
46名無しに影響はない(栃木県):2012/06/26(火) 05:46:47.11 ID:q1XvHCRC
栃木県は200Bq/kg 位(農協の資料)で、15cm均一攪拌とすると、

家庭園芸では3cm程度なので、5倍1000Bq/kg程度の汚染でしょう。
農協の資料が見つからないので、ネットの資料
http://www.niaes.affrc.go.jp/magazine/144/mgzn14401_06.pdf
47名無しに影響はない(栃木県):2012/07/02(月) 20:14:54.18 ID:w0VmVgRK
1.測定対象
「小豆島そうめん 2013.11/Z」(1.7*8*18 cm, 250g )の分析

2.測定結果
1. n=32 糊台
x <- c( 49, 38, 29, 45, 44, 38, 44, 36, 34, 42, 36, 46, 47, 40, 34, 46, 45, 41, 41, 36, 35, 35, 34, 45, 41, 37, 42, 47, 35, 41, 41, 29)

2. n=30 小豆島そうめん 2013.11/Z
x <- c( 45, 28, 41, 42, 45, 33, 34, 34, 42, 28, 42, 31, 42, 48, 34, 37, 37, 43, 41, 28, 36, 35, 40, 44, 30, 44, 29, 36, 27, 36)

3. n=30 糊台
x <- c( 38, 43, 40, 38, 31, 39, 38, 37, 41, 39, 39, 51, 28, 37, 40, 31, 51, 34, 37, 31, 34, 43, 43, 33, 47, 34, 40, 35, 35, 36)

4. n=37 小豆島そうめん 2013.11/Z
x <- c( 35, 41, 46, 39, 40, 43, 39, 26, 47, 41, 41, 45, 37, 53, 51, 40, 43, 43, 36, 39, 39, 29, 49, 44, 38, 35, 39, 54, 35, 39, 46, 40, 37, 38, 60, 38, 51)

5. n=459 糊台
x <- c( 44, 35, 36, 42, 37, 53, 39, 36, 46, 37, 44, 27, 38, 26, 23, 36, 40, 33, 41, 41, 27, 35, 33, 43, 42, 29, 33, 35, 33, 34, 40, 31, 37, 26, 51, 39,
36, 35, 39, 38, 42, 30, 39, 38, 50, 34, 30, 47, 36, 44, 50, 45, 39, 33, 35, 38, 56, 36, 49, 51, 31, 44, 28, 44, 37, 35, 35, 39, 40, 28, 44, 36, 50, 42,
39, 43, 39, 39, 44, 43, 34, 27, 39, 50, 46, 25, 32, 40, 39, 38, 43, 41, 32, 29, 27, 44, 33, 36, 46, 29, 33, 43, 42, 46, 29, 42, 23, 44, 49, 36, 33, 36,
40, 42, 44, 38, 33, 36, 34, 32, 36, 50, 28, 30, 42, 29, 25, 37, 41, 38, 35, 38, 42, 36, 35, 45, 30, 28, 35, 40, 39, 36, 35, 25, 30, 45, 39, 39, 33, 31,
37, 42, 34, 36, 37, 36, 35, 50, 28, 32, 22, 32, 38, 39, 40, 39, 40, 31, 36, 35, 36, 54, 50, 46, 32, 30, 46, 37, 42, 34, 44, 42, 33, 36, 35, 47, 36, 46,
49, 45, 36, 41, 39, 39, 37, 46, 30, 39, 51, 44, 22, 34, 44, 27, 30, 35, 45, 30, 43, 45, 34, 29, 39, 45, 38, 37, 49, 31, 36, 42, 43, 39, 27, 33, 38, 45,
32, 38, 35, 39, 49, 48, 39, 28, 38, 42, 39, 47, 37, 30, 43, 46, 45, 41, 41, 46, 42, 35, 31, 33, 44, 40, 33, 45, 38, 53, 28, 47, 36, 42, 38, 37, 39, 43,
31, 29, 41, 32, 40, 35, 32, 44, 41, 37, 39, 26, 42, 40, 37, 32, 32, 45, 43, 33, 26, 40, 47, 38, 44, 52, 47, 43, 32, 46, 31, 39, 52, 43, 30, 39, 51, 36,
26, 39, 30, 42, 45, 27, 40, 36, 36, 39, 37, 33, 33, 50, 34, 32, 41, 46, 44, 45, 40, 45, 47, 40, 38, 30, 39, 37, 31, 41, 41, 45, 30, 39, 43, 37, 44, 42,
34, 29, 44, 47, 39, 38, 47, 43, 43, 42, 41, 41, 46, 45, 35, 43, 50, 29, 31, 47, 34, 39, 39, 42, 38, 26, 37, 33, 37, 42, 41, 30, 45, 47, 51, 34, 29, 33,
50, 40, 46, 31, 30, 37, 37, 34, 45, 39, 35, 26, 49, 39, 42, 33, 39, 41, 35, 42, 44, 30, 46, 55, 42, 33, 34, 51, 35, 44, 34, 43, 31, 40, 37, 46, 34, 34,
35, 36, 45, 37, 40, 26, 40, 28, 42, 54, 46, 46, 36, 40, 42, 39, 40, 50, 40, 45, 45, 44, 35, 27, 45, 46, 48, 32, 41, 34, 33, 46, 47, 43, 24, 51, 36, 42,
51, 43, 45, 33, 40)

48名無しに影響はない(栃木県):2012/07/02(月) 20:19:04.72 ID:w0VmVgRK
4. データ貼り付け
全体の分析
「本文が長すぎる」というエラーが出たので、以後検定結果だけ。
数値は >>47 の値を使って、各人でコマンドを作ってください。
> mean(x)
[1] 38.68027
> var(x)
[1] 42.14632
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.6148, 第1自由度 = 4, 第2自由度 = 583, P値 = 0.03443
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 4.4339, 自由度 = 4, P値 = 0.3505
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.5928, 第1自由度 = 4.000, 第2自由度 = 71.017, P値 = 0.04368
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 5 0.8503401 0.8503401
25 47 7.9931973 8.8435374
30 100 17.0068027 25.8503401
35 176 29.9319728 55.7823129
40 146 24.8299320 80.6122449
45 80 13.6054422 94.2176871
50 31 5.2721088 99.4897959
55 2 0.3401361 99.8299320
60 1 0.1700680 100.0000000
>
49名無しに影響はない(栃木県):2012/07/02(月) 20:19:53.79 ID:w0VmVgRK
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.2729, 第1自由度 = 1, 第2自由度 = 586, P値 = 0.2597
有意。試料とバックグラウンドとに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.2897, 自由度 = 1, P値 = 0.5904
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.1796, 第1自由度 = 1.000, 第2自由度 = 82.138, P値 = 0.2806
有意。試料とバックグラウンドとに差異がある。

>
50名無しに影響はない(栃木県):2012/07/02(月) 20:20:40.84 ID:w0VmVgRK
繰り返しによる影響

1. n = 521 BG 繰り返し数 =3
> mean(x)
[1] 38.57198
> var(x)
[1] 41.64144
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.657, 第1自由度 = 2, 第2自由度 = 518, P値 = 0.5188
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 4.0711, 自由度 = 2, P値 = 0.1306
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.9531, 第1自由度 = 2.000, 第2自由度 = 47.636, P値 = 0.3928
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 5 0.9596929 0.9596929
25 40 7.6775432 8.6372361
30 94 18.0422265 26.6794626
35 155 29.7504798 56.4299424
40 126 24.1842610 80.6142035
45 72 13.8195777 94.4337812
50 27 5.1823417 99.6161228
55 2 0.3838772 100.0000000
>
51名無しに影響はない(栃木県):2012/07/02(月) 20:21:13.92 ID:w0VmVgRK
2. n = 67 小豆島そうめん 2013.11/Z 繰り返し数 =2
x <- c( 45, 28, 41, 42, 45, 33, 34, 34, 42, 28, 42, 31, 42, 48, 34, 37, 37, 43, 41, 28, 36, 35, 40, 44, 30, 44, 29, 36, 27, 36 ,
35, 41, 46, 39, 40, 43, 39, 26, 47, 41, 41, 45, 37, 53, 51, 40, 43, 43, 36, 39, 39, 29, 49, 44, 38, 35, 39, 54, 35, 39, 46, 40, 37, 38, 60, 38, 51)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 39.52239
> var(x)
[1] 45.95025
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 7.8719, 第1自由度 = 1, 第2自由度 = 65, P値 = 0.006617
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.3594, 自由度 = 1, P値 = 0.5488
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 8.0521, 第1自由度 = 1.000, 第2自由度 = 64.277, P値 = 0.006074
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 7 10.447761 10.44776
30 6 8.955224 19.40299
35 21 31.343284 50.74627
40 20 29.850746 80.59701
45 8 11.940299 92.53731
50 4 5.970149 98.50746
55 0 0.000000 98.50746
60 1 1.492537 100.00000
>
52名無しに影響はない(栃木県):2012/07/02(月) 20:22:16.60 ID:w0VmVgRK
BGと試料の比較

1. n = 521 BG 繰り返し数 =3
gr1 <- c( 49, 38, 29, 45, 44, 38, 44, 36, 34, 42, 36, 46, 47, 40, 34, 46, 45, 41, 41, 36, 35, 35, 34, 45, 41, 37, 42, 47, 35, 41, 41, 29 ,
38, 43, 40, 38, 31, 39, 38, 37, 41, 39, 39, 51, 28, 37, 40, 31, 51, 34, 37, 31, 34, 43, 43, 33, 47, 34, 40, 35, 35, 36 ,
44, 35, 36, 42, 37, 53, 39, 36, 46, 37, 44, 27, 38, 26, 23, 36, 40, 33, 41, 41, 27, 35, 33, 43, 42, 29, 33, 35, 33, 34, 40, 31, 37, 26,
(中略)
48, 32, 41, 34, 33, 46, 47, 43, 24, 51, 36, 42, 51, 43, 45, 33, 40)

2. n = 67 小豆島そうめん 2013.11/Z 繰り返し数 =2
gr2 <- c( 45, 28, 41, 42, 45, 33, 34, 34, 42, 28, 42, 31, 42, 48, 34, 37, 37, 43, 41, 28, 36, 35, 40, 44, 30, 44, 29, 36, 27, 36 ,
35, 41, 46, 39, 40, 43, 39, 26, 47, 41, 41, 45, 37, 53, 51, 40, 43, 43, 36, 39, 39, 29, 49, 44, 38, 35, 39, 54, 35, 39, 46, 40, 37, 38, 60, 38, 51)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -1.1282, 自由度 = 586, P値 = 0.2597
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.6048751 0.7040529
標本推定値:
平均値x 平均値y
38.57198 39.52239
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -1.0861, 自由度 = 82.138, P値 = 0.2806
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.6911638 0.7903416
標本推定値:
平均値x 平均値y
38.57198 39.52239
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.9062, 第1自由度 = 520, 第2自由度 = 66, P値 = 0.5574
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.613138 1.271631
標本推定値:
分散比
0.906229
有意。分散が異なるので(Welchの方法)を使用する。

>
53名無しに影響はない(栃木県):2012/07/02(月) 20:25:32.54 ID:w0VmVgRK
3.補足コメント
最後に糊台の測定を仕掛けて朝まで寝てしまったのでこんな結果になりました。
39.52239 - 38.57198 = 0.9504089 CPM (0.447 Bq)
比重 1.02 g/cm3 受光深さ 0.35 cm 受光容積 7cm3 (7g)
62.3 Bq/kg

以下、分散分析に使っている群番号です。エディタで「,1」を書き換えて使います。
1. n=32 糊台
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

2. n=30 小豆島そうめん 2013.11/Z
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

3. n=30 糊台
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

4. n=37 小豆島そうめん 2013.11/Z
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)

5. n=459 糊台
g <- c(,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
54名無しに影響はない(栃木県):2012/07/02(月) 21:41:23.43 ID:w0VmVgRK
1.測定対象
「小豆島ひやむぎ 2014.1/AB」(1.7*8*18 cm, 250g)の分析

2.測定結果
1. n=30 糊台
x <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54)

2. n=30 小豆島ひやむぎ 2014.1/AB
x <- c( 37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46)

3. n=30 糊台
x <- c( 28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36)

4. n=35 小豆島ひやむぎ 2014.1/AB
x <- c( 43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39)

5. n=31 糊台
x <- c( 36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)
55名無しに影響はない(栃木県):2012/07/02(月) 21:42:03.12 ID:w0VmVgRK
4. データ貼り付け
全体の分析
x <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54 ,
37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46 ,
28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36 ,
43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39 ,
36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 40.16667
> var(x)
[1] 42.2043
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.2556, 第1自由度 = 4, 第2自由度 = 151, P値 = 0.9059
有意ではない。群間の差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.212, 自由度 = 4, P値 = 0.6968
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.2876, 第1自由度 = 4.000, 第2自由度 = 74.568, P値 = 0.8852
有意ではない。群間の差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.2820513 1.282051
25 5 3.2051282 4.487179
30 22 14.1025641 18.589744
35 48 30.7692308 49.358974
40 43 27.5641026 76.923077
45 22 14.1025641 91.025641
50 12 7.6923077 98.717949
55 1 0.6410256 99.358974
60 1 0.6410256 100.000000
>
56名無しに影響はない(栃木県):2012/07/02(月) 21:42:52.16 ID:w0VmVgRK
BGと試料の比較
x <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54 ,
37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46 ,
28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36 ,
43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39 ,
36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.3635, 第1自由度 = 1, 第2自由度 = 154, P値 = 0.5475
有意ではない。試料とバックグラウンドの差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.3448, 自由度 = 1, P値 = 0.5571
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.3719, 第1自由度 = 1.000, 第2自由度 = 143.374, P値 = 0.5429
有意ではない。試料とバックグラウンドの差異は不明。

>

57名無しに影響はない(栃木県):2012/07/02(月) 21:43:50.04 ID:w0VmVgRK
繰り返しによる影響

1. n = 91 BG 繰り返し数 =3
x <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54 ,
28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36 ,
36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 39.9011
> var(x)
[1] 44.75678
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0377, 第1自由度 = 2, 第2自由度 = 88, P値 = 0.963
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.3853, 自由度 = 2, P値 = 0.5002
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0332, 第1自由度 = 2.000, 第2自由度 = 57.886, P値 = 0.9674
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.098901 1.098901
25 4 4.395604 5.494505
30 12 13.186813 18.681319
35 28 30.769231 49.450549
40 27 29.670330 79.120879
45 11 12.087912 91.208791
50 6 6.593407 97.802198
55 1 1.098901 98.901099
60 1 1.098901 100.000000
>
58名無しに影響はない(栃木県):2012/07/02(月) 21:44:54.30 ID:w0VmVgRK
2. n = 65 小豆島ひやむぎ 2014.1/AB 繰り返し数 =2
x <- c( 37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46 ,
43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 40.53846
> var(x)
[1] 39.03365
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.6406, 第1自由度 = 1, 第2自由度 = 63, P値 = 0.4265
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.404, 自由度 = 1, P値 = 0.525
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.6293, 第1自由度 = 1.000, 第2自由度 = 58.741, P値 = 0.4308
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.538462 1.538462
25 1 1.538462 3.076923
30 10 15.384615 18.461538
35 20 30.769231 49.230769
40 16 24.615385 73.846154
45 11 16.923077 90.769231
50 6 9.230769 100.000000
>
59名無しに影響はない(栃木県):2012/07/02(月) 21:45:54.19 ID:w0VmVgRK
BGと試料の比較

1. n = 91 BG 繰り返し数 =3
gr1 <- c( 42, 23, 36, 29, 35, 38, 38, 45, 41, 47, 31, 36, 53, 35, 41, 37, 49, 39, 38, 57, 45, 38, 38, 31, 44, 37, 43, 45, 40, 54 ,
28, 41, 35, 42, 50, 42, 47, 52, 38, 35, 34, 44, 43, 33, 39, 40, 38, 43, 60, 41, 39, 47, 33, 41, 34, 34, 33, 29, 40, 36 ,
36, 44, 45, 31, 42, 40, 40, 51, 42, 41, 34, 48, 26, 33, 37, 41, 35, 48, 36, 35, 41, 41, 39, 35, 37, 53, 33, 43, 43, 39, 46)

2. n = 65 小豆島ひやむぎ 2014.1/AB 繰り返し数 =2
gr2 <- c( 37, 33, 43, 46, 48, 29, 39, 42, 44, 40, 50, 53, 24, 48, 44, 34, 44, 41, 32, 36, 35, 33, 38, 43, 37, 34, 36, 47, 40, 46 ,
43, 42, 37, 34, 51, 36, 45, 37, 43, 42, 34, 33, 50, 37, 41, 43, 39, 47, 39, 47, 38, 44, 35, 48, 39, 31, 47, 50, 38, 38, 48, 39, 31, 54, 39)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -0.6029, 自由度 = 154, P値 = 0.5475
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.725847 1.451122
標本推定値:
平均値x 平均値y
39.90110 40.53846
有意。シリョウトバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -0.6098, 自由度 = 143.374, P値 = 0.5429
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.703268 1.428542
標本推定値:
平均値x 平均値y
39.90110 40.53846
有意。シリョウトバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.1466, 第1自由度 = 90, 第2自由度 = 64, P値 = 0.5658
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.7197484 1.7944198
標本推定値:
分散比
1.146620
有意。分散が異なるので(Welchの方法)を使用する。

>
60名無しに影響はない(栃木県):2012/07/02(月) 21:47:02.90 ID:w0VmVgRK
3.補足コメント
40.53846 - 39.90110 = 0.6373596 CPM (0.300Bq)
比重 1.02 受光深さ 0.35cm 受光容積 7cm3(7g)
41.8 Bq/kg
61名無しに影響はない(栃木県):2012/07/02(月) 22:02:57.32 ID:w0VmVgRK
連投禁止とサイズ制限で一部分しか掲載していないけど
近所で購入できる麺類(スパゲティ・ラーメンを含む)は、全滅っぽい。

春に生まれた子ヌコ様の頭がよくなってきたのか、人間の食品を略奪して食べるようになりました。
掲載していないけど、20Bq/kg という結果になったうどんを子ヌコ様と親ヌコ様が合同で略奪してゆきました。
下痢してくれました。子ヌコ様は、まだ便所のしつけができていません。現在はパソコン用机の下で用をたしています。
親ヌコ様は、隣家のヌコと喧嘩して、負けて、便所を取り上げられてしまったのです。それで、パソコンの下で用をたしています。

ヌコ様には、今後とも毒見方として活躍してもらう予定です。
62名無しに影響はない(やわらか銀行):2012/07/04(水) 19:32:28.64 ID:XOjdnWtN
>>61
猫用トイレは複数設置したほうがよいよ。
猫砂やエサも汚染しているかもしれない。

63名無しに影響はない(栃木県):2012/07/13(金) 20:35:59.99 ID:5hLmCnjK
>>62
>猫砂やエサも汚染しているかもしれない。
猫砂は、猫の糞尿がこびりついているので、バッチシ汚染されている。
エサは、100-600Bq/kg なんて数値をヤツ(過去の分析値参照)を食わせているので、バッチシ汚染されている。
今回は、捕まえてきたモグラの食べ残しを分析した。
ディズニーは尻尾も食ってしまうので、分析不可。虫も蛙も全部食ってしまうのが我が家のヌコ様。

1.測定対象
「2012.07.04入手 モグラの両手足 4.9wg 2.7dg」の分析

2.測定結果
1. n=41 糊台
x <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35)

2. n=31 2012.07.04入手 モグラの両手足 4.9wg 2.7dg
x <- c( 42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36)

3. n=30 糊台
x <- c( 31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38)

4. n=31 2012.07.04入手 モグラの両手足 4.9wg 2.7dg
x <- c( 31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44)

5. n=32 糊台
x <- c( 35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)
64名無しに影響はない(栃木県):2012/07/13(金) 20:37:19.65 ID:5hLmCnjK
4. データ貼り付け
全体の分析
x <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35 ,
42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36 ,
31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38 ,
31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44 ,
35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 37.46061
> var(x)
[1] 24.79874
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.777, 第1自由度 = 4, 第2自由度 = 160, P値 = 0.5417
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 5.1269, 自由度 = 4, P値 = 0.2745
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.8445, 第1自由度 = 4.000, 第2自由度 = 78.464, P値 = 0.5012
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 12 7.2727273 7.272727
30 31 18.7878788 26.060606
35 69 41.8181818 67.878788
40 40 24.2424242 92.121212
45 12 7.2727273 99.393939
50 1 0.6060606 100.000000
>
65名無しに影響はない(栃木県):2012/07/13(金) 20:38:13.09 ID:5hLmCnjK
BGと試料の比較
x <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35 ,
42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36 ,
31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38 ,
31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44 ,
35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.3157, 第1自由度 = 1, 第2自由度 = 163, P値 = 0.575
有意ではない。試料とバックグラウンドの差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.7238, 自由度 = 1, P値 = 0.05364
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.3529, 第1自由度 = 1.000, 第2自由度 = 150.522, P値 = 0.5534
有意ではない。試料とバックグラウンドの差異は不明。

>
66名無しに影響はない(栃木県):2012/07/13(金) 20:39:02.74 ID:5hLmCnjK
繰り返しによる影響

1. n = 103 BG 繰り返し数 =3
x <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35 ,
31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38 ,
35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 37.29126
> var(x)
[1] 28.83590
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.611, 第1自由度 = 2, 第2自由度 = 100, P値 = 0.5448
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.7711, 自由度 = 2, P値 = 0.6801
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.6111, 第1自由度 = 2.000, 第2自由度 = 63.287, P値 = 0.5459
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 8.7378641 8.737864
30 21 20.3883495 29.126214
35 40 38.8349515 67.961165
40 24 23.3009709 91.262136
45 8 7.7669903 99.029126
50 1 0.9708738 100.000000
>
67名無しに影響はない(栃木県):2012/07/13(金) 20:39:49.41 ID:5hLmCnjK
2. n = 62 2012.07.04入手 モグラの両手足 4.9wg 2.7dg 繰り返し数 =2
x <- c( 42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36 ,
31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 37.74194
> var(x)
[1] 18.32575
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.8895, 第1自由度 = 1, 第2自由度 = 60, P値 = 0.1744
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.3624, 自由度 = 1, P値 = 0.5471
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.8895, 第1自由度 = 1.000, 第2自由度 = 59.276, P値 = 0.1744
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 3 4.838710 4.83871
30 10 16.129032 20.96774
35 29 46.774194 67.74194
40 16 25.806452 93.54839
45 4 6.451613 100.00000
>
68名無しに影響はない(栃木県):2012/07/13(金) 20:40:33.67 ID:5hLmCnjK
BGと試料の比較

1. n = 103 BG 繰り返し数 =3
gr1 <- c( 36,33,36,41,31,33,28,40,36,33,36,39,40,44,36,41,44,37,44,38,40,49,39,30,38,35,40,34,27,36,33,32,29,45,42,43,36,51,38,35,35 ,
31,45,35,36,29,41,38,29,46,48,38,48,33,39,32,39,37,40,48,38,31,31,36,35,40,44,44,42,29,38 ,
35,37,27,39,27,39,43,43,41,37,34,46,39,38,44,40,31,29,31,31,35,31,34,37,41,37,44,37,39,33,32,37)

2. n = 62 2012.07.04入手 モグラの両手足 4.9wg 2.7dg 繰り返し数 =2
gr2 <- c( 42,37,36,45,38,33,34,39,35,41,36,39,33,38,33,35,44,37,38,45,46,42,41,41,41,38,41,37,26,46,36 ,
31,37,42,27,35,41,34,38,40,37,34,38,29,40,36,37,39,39,36,34,42,32,32,42,38,39,38,37,42,37,44)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -0.5618, 自由度 = 163, P値 = 0.575
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.034599 1.133253
標本推定値:
平均値x 平均値y
37.29126 37.74194
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -0.5941, 自由度 = 150.522, P値 = 0.5534
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -1.949635 1.048288
標本推定値:
平均値x 平均値y
37.29126 37.74194
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.5735, 第1自由度 = 102, 第2自由度 = 61, P値 = 0.05602
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.9882314 2.4411640
標本推定値:
分散比
1.573518
有意。分散が異なるので(Welchの方法)を使用する。

>
69名無しに影響はない(栃木県):2012/07/13(金) 20:41:20.91 ID:5hLmCnjK
3.補足コメント
37.74194 - 37.29126 = 0.4506798 CPM(0.211 Bq)

0.211 * 1000 / 4.9 = 43.2 Bq/wkg
0.211 * 1000 / 2.7 = 78.5 Bq/dkg
70名無しに影響はない(栃木県):2012/07/13(金) 20:42:49.78 ID:5hLmCnjK
略号の解説
wkg, wg 湿重量 
dkg, dg 乾重量
の意味で使っています。
71名無しに影響はない(栃木県):2012/07/13(金) 21:35:29.90 ID:5hLmCnjK
1.測定対象
「栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫」の分析
40度10日間乾燥。

2.測定結果
1. n=35 糊台
x <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45)

2. n=32 栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫
x <- c( 51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50)

3. n=30 糊台
x <- c( 44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46)

4. n=31 栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫
x <- c( 55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49)

5. n=31 糊台
x <- c( 29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)
72名無しに影響はない(栃木県):2012/07/13(金) 21:36:17.65 ID:5hLmCnjK
4. データ貼り付け
全体の分析
x <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45 ,
51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50 ,
44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46 ,
55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49 ,
29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 42.20126
> var(x)
[1] 64.44025
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 24.1031, 第1自由度 = 4, 第2自由度 = 154, P値 = 1.694e-15
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.9984, 自由度 = 4, P値 = 0.736
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 23.3877, 第1自由度 = 4.000, 第2自由度 = 76.715, P値 = 1.155e-12
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 5.6603774 5.660377
30 15 9.4339623 15.094340
35 40 25.1572327 40.251572
40 35 22.0125786 62.264151
45 29 18.2389937 80.503145
50 18 11.3207547 91.823899
55 10 6.2893082 98.113208
60 2 1.2578616 99.371069
65 1 0.6289308 100.000000
>
73名無しに影響はない(栃木県):2012/07/13(金) 21:37:04.07 ID:5hLmCnjK
BGと試料の比較
x <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45 ,
51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50 ,
44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46 ,
55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49 ,
29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 96.791, 第1自由度 = 1, 第2自由度 = 157, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.5446, 自由度 = 1, P値 = 0.4605
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 93.4207, 第1自由度 = 1.000, 第2自由度 = 124.707, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

>
74名無しに影響はない(栃木県):2012/07/13(金) 21:37:47.11 ID:5hLmCnjK
繰り返しによる影響

1. n = 96 BG 繰り返し数 =3
x <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45 ,
44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46 ,
29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.19792
> var(x)
[1] 37.38147
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.4881, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.6154
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.2469, 自由度 = 2, P値 = 0.5361
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.4993, 第1自由度 = 2.000, 第2自由度 = 61.582, P値 = 0.6094
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 9.375000 9.37500
30 15 15.625000 25.00000
35 35 36.458333 61.45833
40 21 21.875000 83.33333
45 12 12.500000 95.83333
50 3 3.125000 98.95833
55 1 1.041667 100.00000
>
75名無しに影響はない(栃木県):2012/07/13(金) 21:38:32.75 ID:5hLmCnjK
2. n = 63 栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫 繰り返し数 =2
x <- c( 51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50 ,
55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 48.30159
> var(x)
[1] 44.3108
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0026, 第1自由度 = 1, 第2自由度 = 61, P値 = 0.9598
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.1834, 自由度 = 1, P値 = 0.6684
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0026, 第1自由度 = 1.000, 第2自由度 = 60.872, P値 = 0.9597
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
35 5 7.936508 7.936508
40 14 22.222222 30.158730
45 17 26.984127 57.142857
50 15 23.809524 80.952381
55 9 14.285714 95.238095
60 2 3.174603 98.412698
65 1 1.587302 100.000000
>

76名無しに影響はない(栃木県):2012/07/13(金) 21:39:19.09 ID:5hLmCnjK
BGと試料の比較

1. n = 96 BG 繰り返し数 =3
gr1 <- c( 39,40,34,38,35,41,39,45,45,42,27,37,38,31,34,42,27,42,39,39,35,36,27,35,38,30,31,36,47,57,47,31,41,42,45 ,
44,43,41,41,36,32,29,39,36,39,38,43,29,40,35,38,31,38,29,39,40,36,35,46,46,30,36,28,42,46 ,
29,35,39,39,46,46,34,39,50,28,44,46,36,39,31,40,44,35,35,32,40,50,54,43,34,37,40,32,32,45,36)

2. n = 63 栃木産梅(畑B) 42.1wg 8.7dg 2012.06.21収穫 繰り返し数 =2
gr2 <- c( 51,40,45,67,52,40,51,50,44,56,45,43,38,45,57,42,47,56,64,50,50,53,39,40,49,48,44,50,53,39,49,50 ,
55,40,49,50,51,46,49,37,56,56,58,52,35,44,45,53,49,47,43,60,45,56,51,43,46,42,40,47,59,43,49)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -9.8382, 自由度 = 157, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -12.132149 -8.075192
標本推定値:
平均値x 平均値y
38.19792 48.30159
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -9.6654, 自由度 = 124.707, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -12.172576 -8.034765
標本推定値:
平均値x 平均値y
38.19792 48.30159
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8436, 第1自由度 = 95, 第2自由度 = 62, P値 = 0.4507
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5287648 1.3165316
標本推定値:
分散比
0.8436197
有意。分散が異なるので(Welchの方法)を使用する。

>
77名無しに影響はない(栃木県):2012/07/13(金) 21:40:45.15 ID:5hLmCnjK
3.補足コメント
48.30159 - 38.19792 = 10.10367 CPM (4.75 Bq)
4.75 * 1000 / 42.1 =112 Bq/wkg
4.75 * 1000 / 8.7 = 545 Bq/dkg
果肉と種と果皮をそのまま乾燥させて測定した。又β線は1cm以上届かない(実測では7mm)。つまり、種の反対側の放射線は測定できない。よって、上記数値の2倍の大きさが測定値となる。
乾重量 8.7g, 湿重量 42.1gより、水分20%。
水分 90.1% ( http://www.tukeru.com/knowledge/knowledge_51.htm )
カリウム 290mg/100g ( http://www.tukeru.com/knowledge/knowledge_51.htm )より8.96Bq/wkg
78名無しに影響はない(栃木県):2012/07/14(土) 20:14:29.49 ID:gi1ydHVU
1.測定対象
「栃木県内の水田内麦栽培地 6条大麦 2012.06.08収穫 40度1週間乾燥 3.9g」の分析

2.測定結果
1. n=30 糊台
x <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45)

2. n=44 2012.06.08収穫 栃木県内の水田内麦栽培地 6条大麦 40度1週間乾燥 3.9g
x <- c( 46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48)

3. n=30 糊台
x <- c( 36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32)

4. n=31 2012.06.08収穫 栃木県内の水田内麦栽培地 6条大麦 40度1週間乾燥 3.9g
x <- c( 55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37)

5. n=36 糊台
x <- c( 42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)

79名無しに影響はない(栃木県):2012/07/14(土) 20:15:47.94 ID:gi1ydHVU
4. データ貼り付け
全体の分析
x <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45 ,
46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48 ,
36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32 ,
55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37 ,
42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 39.19298
> var(x)
[1] 44.92136
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.9571, 第1自由度 = 4, 第2自由度 = 166, P値 = 0.4327
有意。群間に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.1677, 自由度 = 4, P値 = 0.8834
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.8744, 第1自由度 = 4.000, 第2自由度 = 80.263, P値 = 0.4831
有意。群間に差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.5847953 0.5847953
25 13 7.6023392 8.1871345
30 30 17.5438596 25.7309942
35 45 26.3157895 52.0467836
40 43 25.1461988 77.1929825
45 29 16.9590643 94.1520468
50 9 5.2631579 99.4152047
55 1 0.5847953 100.0000000
>
80名無しに影響はない(栃木県):2012/07/14(土) 20:16:40.14 ID:gi1ydHVU
BGと試料の比較
x <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45 ,
46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48 ,
36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32 ,
55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37 ,
42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.8252, 第1自由度 = 1, 第2自由度 = 169, P値 = 0.365
有意。試料とバックグラウンドに差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.8412, 自由度 = 1, P値 = 0.3591
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.805, 第1自由度 = 1.000, 第2自由度 = 150.816, P値 = 0.3710
有意。試料とバックグラウンドに差がある。

>
81名無しに影響はない(栃木県):2012/07/14(土) 20:17:23.36 ID:gi1ydHVU
繰り返しによる影響

1. n = 96 BG 繰り返し数 =3
x <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45 ,
36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32 ,
42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.78125
> var(x)
[1] 40.9727
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.6579, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.5203
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.4677, 自由度 = 2, P値 = 0.7915
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.6216, 第1自由度 = 2.000, 第2自由度 = 60.393, P値 = 0.5405
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 8 8.333333 8.333333
30 16 16.666667 25.000000
35 31 32.291667 57.291667
40 23 23.958333 81.250000
45 12 12.500000 93.750000
50 6 6.250000 100.000000
>
82名無しに影響はない(栃木県):2012/07/14(土) 20:18:14.42 ID:gi1ydHVU
2. n = 75 2012.06.08収穫 栃木県内の水田内麦栽培地 6条大麦 40度1週間乾燥 3.9g 繰り返し数 =2
x <- c( 46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48 ,
55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 39.72
> var(x)
[1] 50.09622
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.6254, 第1自由度 = 1, 第2自由度 = 73, P値 = 0.2064
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 5e-04, 自由度 = 1, P値 = 0.9824
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.6275, 第1自由度 = 1.000, 第2自由度 = 64.893, P値 = 0.2066
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.333333 1.333333
25 5 6.666667 8.000000
30 14 18.666667 26.666667
35 14 18.666667 45.333333
40 20 26.666667 72.000000
45 17 22.666667 94.666667
50 3 4.000000 98.666667
55 1 1.333333 100.000000
>
83名無しに影響はない(栃木県):2012/07/14(土) 20:19:21.79 ID:gi1ydHVU
BGと試料の比較

1. n = 96 BG 繰り返し数 =3
gr1 <- c( 38,42,27,41,42,48,42,44,34,41,28,45,46,36,26,33,37,36,37,37,39,54,30,29,31,28,43,34,41,45 ,
36,34,50,46,44,40,40,33,37,37,44,52,40,52,40,44,31,36,40,32,38,29,33,42,35,48,43,45,38,32 ,
42,47,48,44,37,41,39,30,30,25,35,36,39,37,32,35,39,39,51,37,48,48,42,34,39,46,38,51,41,36,39,29,38,33,37,36)

2. n = 75 2012.06.08収穫 栃木県内の水田内麦栽培地 6条大麦 40度1週間乾燥 3.9g 繰り返し数 =2
gr2 <- c( 46,39,40,32,41,51,47,47,49,44,40,47,48,37,30,29,48,50,30,46,43,31,40,31,48,31,26,45,41,35,39,41,44,46,44,29,43,49,46,37,44,32,32,48 ,
55,40,32,43,43,34,35,22,27,28,38,39,31,32,39,45,43,40,44,38,33,51,41,34,38,43,47,37,47,37,37)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -0.9084, 自由度 = 169, P値 = 0.365
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.978848 1.101348
標本推定値:
平均値x 平均値y
38.78125 39.72000
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -0.8972, 自由度 = 150.816, P値 = 0.3710
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.006053 1.128553
標本推定値:
平均値x 平均値y
38.78125 39.72000
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8179, 第1自由度 = 95, 第2自由度 = 74, P値 = 0.3543
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5274614 1.2533628
標本推定値:
分散比
0.81788
有意。分散が異なるので(Welchの方法)を使用する。

>
84名無しに影響はない(栃木県):2012/07/14(土) 20:20:39.48 ID:gi1ydHVU
3.補足コメント
39.72000 - 38.78125 = 0.9387512 CPM (0.441 Bq)
0.441 * 1000 / 3.9 = 113 Bq/kg
試料の度数分布を見ると、BG部分がかなり多い。試料が少なくて、マイナス誤差になっている可能性がある。

脱穀しないで、穂をそのままはかっています
85名無しに影響はない(栃木県):2012/07/15(日) 20:27:40.17 ID:1J/lQEev
1.測定対象
「茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg」の分析

2.測定結果
1. n=30 糊台
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42)

2. n=30 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg
x <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48)

3. n=36 糊台
x <- c( 39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38)

4. n=30 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg
x <- c( 64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)

5. n=30 糊台
x <- c( 37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
86名無しに影響はない(栃木県):2012/07/15(日) 20:28:54.75 ID:1J/lQEev
4. データ貼り付け
全体の分析
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 47.13462
> var(x)
[1] 188.7624
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 97.3449, 第1自由度 = 4, 第2自由度 = 151, P値 < 2.2e-16
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 11.706, 自由度 = 4, P値 = 0.01968
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 92.0698, 第1自由度 = 4.000, 第2自由度 = 73.085, P値 < 2.2e-16
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.6410256 0.6410256
25 9 5.7692308 6.4102564
30 16 10.2564103 16.6666667
35 34 21.7948718 38.4615385
40 23 14.7435897 53.2051282
45 13 8.3333333 61.5384615
50 11 7.0512821 68.5897436
55 16 10.2564103 78.8461538
60 14 8.9743590 87.8205128
65 8 5.1282051 92.9487179
70 4 2.5641026 95.5128205
75 5 3.2051282 98.7179487
80 2 1.2820513 100.0000000
>
87名無しに影響はない(栃木県):2012/07/15(日) 20:29:40.81 ID:1J/lQEev
BGと試料の比較
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 349.4101, 第1自由度 = 1, 第2自由度 = 154, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 8.2533, 自由度 = 1, P値 = 0.004068
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 300.974, 第1自由度 = 1.000, 第2自由度 = 96.834, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

>
88名無しに影響はない(栃木県):2012/07/15(日) 20:30:16.22 ID:1J/lQEev
繰り返しによる影響

1. n = 96 BG 繰り返し数 =3
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.11458
> var(x)
[1] 42.69200
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.943, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.009118
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.2586, 自由度 = 2, P値 = 0.3233
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 5.4039, 第1自由度 = 2.000, 第2自由度 = 58.496, P値 = 0.007021
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.041667 1.041667
25 9 9.375000 10.416667
30 16 16.666667 27.083333
35 34 35.416667 62.500000
40 22 22.916667 85.416667
45 10 10.416667 95.833333
50 3 3.125000 98.958333
55 1 1.041667 100.000000
>
89名無しに影響はない(栃木県):2012/07/15(日) 20:30:50.63 ID:1J/lQEev
2. n = 60 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg 繰り返し数 =2
x <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 61.56667
> var(x)
[1] 82.96158
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.9524, 第1自由度 = 1, 第2自由度 = 58, P値 = 0.02996
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.0269, 自由度 = 1, P値 = 0.3109
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 4.9524, 第1自由度 = 1.000, 第2自由度 = 56.018, P値 = 0.03010
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
40 1 1.666667 1.666667
45 3 5.000000 6.666667
50 8 13.333333 20.000000
55 15 25.000000 45.000000
60 14 23.333333 68.333333
65 8 13.333333 81.666667
70 4 6.666667 88.333333
75 5 8.333333 96.666667
80 2 3.333333 100.000000
>

90名無しに影響はない(栃木県):2012/07/15(日) 20:31:30.22 ID:1J/lQEev
BGと試料の比較

1. n = 96 BG 繰り返し数 =3
gr1 <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)

2. n = 60 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg 繰り返し数 =2
gr2 <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -18.6925, 自由度 = 154, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -25.93058 -20.97359
標本推定値:
平均値x 平均値y
38.11458 61.56667
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -17.3486, 自由度 = 96.834, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -26.13512 -20.76905
標本推定値:
平均値x 平均値y
38.11458 61.56667
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.5146, 第1自由度 = 95, 第2自由度 = 59, P値 = 0.003833
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3197390 0.8074844
標本推定値:
分散比
0.5145996
有意。分散が異なるので(Welchの方法)を使用する。

>
91名無しに影響はない(栃木県):2012/07/15(日) 20:32:10.90 ID:1J/lQEev
3.補足コメント
61.56667 - 38.11458 = 23.45209 CPM (11.0Bq)
11.0 * 1000 / 5.3 = 2079Bq/kg
水分 92.7 %, カリウム 200mg /100g (6.18 Bq/kg) ( http://www.yasainavi.com/eiyou/eiyouhyouseparate/101 )より
乾燥前の線量は
2079 * 7.3 / 100 = 151 Bq/kg
92名無しに影響はない(栃木県):2012/07/15(日) 21:28:15.47 ID:1J/lQEev
1.測定対象
「2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg」の分析

2.測定結果
1. n=30 糊台
x <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44)

2. n=30 2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg
x <- c( 56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46)

3. n=32 糊台
x <- c( 30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37)

4. n=30 2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg
x <- c( 41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49)

5. n=30 糊台
x <- c( 23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)
93名無しに影響はない(栃木県):2012/07/15(日) 21:29:05.78 ID:1J/lQEev
4. データ貼り付け
全体の分析
x <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44 ,
56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46 ,
30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37 ,
41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49 ,
23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 41.17763
> var(x)
[1] 57.81592
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 10.648, 第1自由度 = 4, 第2自由度 = 147, P値 = 1.322e-07
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.7562, 自由度 = 4, P値 = 0.9442
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 10.6181, 第1自由度 = 4.000, 第2自由度 = 73.327, P値 = 7.659e-07
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.3157895 1.315789
25 6 3.9473684 5.263158
30 22 14.4736842 19.736842
35 37 24.3421053 44.078947
40 32 21.0526316 65.131579
45 31 20.3947368 85.526316
50 15 9.8684211 95.394737
55 6 3.9473684 99.342105
60 1 0.6578947 100.000000
>
94名無しに影響はない(栃木県):2012/07/15(日) 21:29:49.61 ID:1J/lQEev
BGと試料の比較
x <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44 ,
56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46 ,
30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37 ,
41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49 ,
23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 42.4065, 第1自由度 = 1, 第2自由度 = 150, P値 = 1.053e-09
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.2283, 自由度 = 1, P値 = 0.6328
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 43.4409, 第1自由度 = 1.000, 第2自由度 = 131.285, P値 = 9.68e-10
有意。試料とバックグラウンドに差異がある。

>
95名無しに影響はない(栃木県):2012/07/15(日) 21:30:25.48 ID:1J/lQEev
繰り返しによる影響

1. n = 92 BG 繰り返し数 =3
x <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44 ,
30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37 ,
23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.30435
> var(x)
[1] 47.37888
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.2939, 第1自由度 = 2, 第2自由度 = 89, P値 = 0.746
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.522, 自由度 = 2, P値 = 0.7703
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.3045, 第1自由度 = 2.000, 第2自由度 = 58.781, P値 = 0.7386
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 2.173913 2.173913
25 5 5.434783 7.608696
30 20 21.739130 29.347826
35 29 31.521739 60.869565
40 19 20.652174 81.521739
45 13 14.130435 95.652174
50 2 2.173913 97.826087
55 1 1.086957 98.913043
60 1 1.086957 100.000000
>
96名無しに影響はない(栃木県):2012/07/15(日) 21:31:00.82 ID:1J/lQEev
2. n = 60 2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg 繰り返し数 =2
x <- c( 56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46 ,
41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 45.58333
> var(x)
[1] 42.28107
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.2057, 第1自由度 = 1, 第2自由度 = 58, P値 = 0.6518
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.0027, 自由度 = 1, P値 = 0.9586
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.2057, 第1自由度 = 1.000, 第2自由度 = 57.995, P値 = 0.6518
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 1 1.666667 1.666667
30 2 3.333333 5.000000
35 8 13.333333 18.333333
40 13 21.666667 40.000000
45 18 30.000000 70.000000
50 13 21.666667 91.666667
55 5 8.333333 100.000000
>
97名無しに影響はない(栃木県):2012/07/15(日) 21:31:35.84 ID:1J/lQEev
BGと試料の比較

1. n = 92 BG 繰り返し数 =3
gr1 <- c( 36,60,35,32,37,45,31,29,35,31,28,38,32,43,40,51,36,40,34,37,35,37,34,33,34,37,48,42,32,44 ,
30,33,36,24,36,44,48,37,42,29,32,37,41,35,49,37,44,48,46,46,34,49,28,45,46,40,38,40,38,36,38,37 ,
23,40,39,58,54,37,35,46,30,30,27,40,33,37,42,42,46,35,33,39,34,47,42,43,42,36,43,34,35,33)

2. n = 60 2012.06.19入手 栃木県内で販売されていた夏みかん皮 11日乾燥 61.1wg 14.5dg 繰り返し数 =2
gr2 <- c( 56,49,53,45,47,35,53,42,42,51,43,32,55,50,47,38,33,44,42,45,51,37,42,53,46,45,53,49,55,46 ,
41,45,53,37,42,47,46,56,51,42,37,43,50,53,48,39,36,49,42,45,45,44,40,54,28,55,51,39,49,49)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -6.512, 自由度 = 150, P値 = 1.053e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -9.487604 -5.070367
標本推定値:
平均値x 平均値y
38.30435 45.58333
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -6.591, 自由度 = 131.285, P値 = 9.68e-10
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -9.463684 -5.094287
標本推定値:
平均値x 平均値y
38.30435 45.58333
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.1206, 第1自由度 = 91, 第2自由度 = 59, P値 = 0.6448
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.6941548 1.7668627
標本推定値:
分散比
1.120570
有意。分散が異なるので(Welchの方法)を使用する

>
98名無しに影響はない(栃木県):2012/07/15(日) 21:32:11.93 ID:1J/lQEev
3.補足コメント
45.58333 - 38.30435 = 7.278976 CPM (3.42Bq)
3.42 * 1000 / 61.1 = 56.0 Bq/wkg
3.42 * 1000 / 14.5 = 236 Bq/dkg
水分 (61.1-14.5) * 100 / 61.1 = 76.2%
カリウム 90mg/70g ( http://slism.jp/calorie/107112/ ) 4.0Bq/kg
99名無しに影響はない(栃木県):2012/07/15(日) 22:35:28.11 ID:1J/lQEev
1.測定対象
「2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg」の分析

2.測定結果
1. n=73 糊台
x <- c( 35,49,29,35,38,34,36,33,40,37,44,33,33,33,40,37,35,54,27,28,42,38,39,31,39,30,35,
41,37,35,53,26,39,35,31,46,40,38,29,42,47,37,46,35,34,47,35,45,42,29,31,42,38,45,43,35,27,
30,35,36,43,30,45,32,38,42,33,39,30,42,37,35,42)

2. n=38 2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg
x <- c( 30,39,31,44,49,44,39,45,37,40,41,41,45,36,43,40,49,44,32,39,49,38,49,38,36,53,42,37,46,47,44,54,48,36,43,38,41,45)

3. n=31 糊台
x <- c( 35,35,47,33,41,42,45,54,27,34,36,53,39,35,41,56,42,30,48,35,39,44,32,36,37,33,30,35,43,32,43)

4. n=41 2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg
x <- c( 49,46,35,31,35,29,51,39,49,48,37,34,36,35,47,38,31,34,33,48,40,51,42,39,40,42,47,28,43,44,38,41,41,46,28,40,53,38,46,44,40)

5. n=265 糊台
x <- c( 40,35,40,37,40,37,32,30,40,28,40,47,39,53,43,33,36,34,41,31,47,32,45,46,31,49,38,
44,40,43,40,41,38,39,51,31,34,49,32,39,34,38,30,39,48,41,39,40,35,34,35,48,51,38,38,28,39,
35,51,47,45,36,34,38,45,31,52,62,33,34,30,37,38,36,47,36,35,29,32,43,40,39,40,49,33,37,27,
45,28,40,60,46,35,36,50,42,36,33,36,30,40,48,47,48,51,48,33,42,41,31,34,39,26,37,38,28,42,
42,56,38,32,44,44,54,35,31,40,39,36,38,42,32,37,34,33,35,35,33,40,36,36,47,39,36,29,43,28,
35,37,35,47,37,36,36,37,40,33,39,38,40,35,28,31,39,39,35,28,35,47,27,31,37,44,45,41,38,41,
44,41,30,43,41,31,37,27,43,38,44,35,39,38,33,40,30,37,41,31,33,43,40,40,37,40,30,27,48,45,
35,42,32,36,43,25,34,34,38,46,38,38,32,26,34,40,33,43,42,27,20,31,41,47,27,34,31,40,39,38,
40,36,43,37,38,32,47,37,39,32,31,36,44,39,30,37,38,50,33,48,46,33,47,34,40,30,44,35)

以下、行数がうまく合わせられないので、データ行を略。
100名無しに影響はない(栃木県):2012/07/15(日) 22:36:11.72 ID:1J/lQEev
4. データ貼り付け
全体の分析
> mean(x)
[1] 38.58705
> var(x)
[1] 42.52484
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.4455, 第1自由度 = 4, 第2自由度 = 443, P値 = 0.001564
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.5165, 自由度 = 4, P値 = 0.6417
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 5.0627, 第1自由度 = 4.000, 第2自由度 = 97.144, P値 = 0.0009504
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.2232143 0.2232143
25 29 6.4732143 6.6964286
30 88 19.6428571 26.3392857
35 144 32.1428571 58.4821429
40 103 22.9910714 81.4732143
45 61 13.6160714 95.0892857
50 18 4.0178571 99.1071429
55 2 0.4464286 99.5535714
60 2 0.4464286 100.0000000
>
101名無しに影響はない(栃木県):2012/07/15(日) 22:36:44.88 ID:1J/lQEev
BGと試料の比較
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 14.8474, 第1自由度 = 1, 第2自由度 = 446, P値 = 0.0001337
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.2354, 自由度 = 1, P値 = 0.6275
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 15.7045, 第1自由度 = 1.000, 第2自由度 = 117.313, P値 = 0.0001276
有意。試料とバックグラウンドに差異がある。

>
102名無しに影響はない(栃木県):2012/07/15(日) 22:37:20.83 ID:1J/lQEev
繰り返しによる影響

1. n = 369 BG 繰り返し数 =3
> mean(x)
[1] 38.04607
> var(x)
[1] 41.85385
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.9135, 第1自由度 = 2, 第2自由度 = 366, P値 = 0.4020
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.358, 自由度 = 2, P値 = 0.5071
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.8797, 第1自由度 = 2.000, 第2自由度 = 70.614, P値 = 0.4194
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.2710027 0.2710027
25 26 7.0460705 7.3170732
30 80 21.6802168 28.9972900
35 123 33.3333333 62.3306233
40 80 21.6802168 84.0108401
45 42 11.3821138 95.3929539
50 13 3.5230352 98.9159892
55 2 0.5420054 99.4579946
60 2 0.5420054 100.0000000
>
103名無しに影響はない(栃木県):2012/07/15(日) 22:37:53.88 ID:1J/lQEev
2. n = 79 2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg 繰り返し数 =2
x <- c( 30,39,31,44,49,44,39,45,37,40,41,41,45,36,43,40,49,44,32,39,49,38,49,38,36,53,42,37,46,47,44,54,48,36,43,38,41,45 ,
49,46,35,31,35,29,51,39,49,48,37,34,36,35,47,38,31,34,33,48,40,51,42,39,40,42,47,28,43,44,38,41,41,46,28,40,53,38,46,44,40)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 41.11392
> var(x)
[1] 38.38429
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.1654, 第1自由度 = 1, 第2自由度 = 77, P値 = 0.2837
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.9091, 自由度 = 1, P値 = 0.3404
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.1793, 第1自由度 = 1.000, 第2自由度 = 76.535, P値 = 0.2809
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 3 3.797468 3.797468
30 8 10.126582 13.924051
35 21 26.582278 40.506329
40 23 29.113924 69.620253
45 19 24.050633 93.670886
50 5 6.329114 100.000000
>
104名無しに影響はない(栃木県):2012/07/15(日) 22:38:45.42 ID:1J/lQEev
BGと試料の比較

1. n = 369 BG 繰り返し数 =3
gr1 <- c( 35,49,29,35,38,34,36,33,40,37,44,33,33,33,40,37,35,54,27,28,42,38,39,31,39,30,35,41,
37,35,53,26,39,35,31,46,40,38,29,42,47,37,46,35,34,47,35,45,42,29,31,42,38,45,43,35,27,30,35,36,43,30,45,32,38,42,33,39,30,42,37,35,42 ,
35,35,47,33,41,42,45,54,27,34,36,53,39,35,41,56,42,30,48,35,39,44,32,36,37,33,30,35,43,32,43 ,
40,35,40,37,40,37,32,30,40,28,40,47,39,53,43,33,36,34,41,31,47,32,45,46,31,49,38,44,40,43,40,
41,38,39,51,31,34,49,32,39,34,38,30,39,48,41,39,40,35,34,35,48,51,38,38,28,39,35,51,47,45,36,
34,38,45,31,52,62,33,34,30,37,38,36,47,36,35,29,32,43,40,39,40,49,33,37,27,45,28,40,60,46,35,
36,50,42,36,33,36,30,40,48,47,48,51,48,33,42,41,31,34,39,26,37,38,28,42,42,56,38,32,44,44,54,
35,31,40,39,36,38,42,32,37,34,33,35,35,33,40,36,36,47,39,36,29,43,28,35,37,35,47,37,36,36,37,
40,33,39,38,40,35,28,31,39,39,35,28,35,47,27,31,37,44,45,41,38,41,44,41,30,43,41,31,37,27,43,
38,44,35,39,38,33,40,30,37,41,31,33,43,40,40,37,40,30,27,48,45,35,42,32,36,43,25,34,34,38,46,
38,38,32,26,34,40,33,43,42,27,20,31,41,47,27,34,31,40,39,38,40,36,43,37,38,32,47,37,39,32,31,36,44,39,30,37,38,50,33,48,46,33,47,34,40,30,44,35)

2. n = 79 2012.06.19入手 栃木県内で販売されていた夏みかん実 14日乾燥 12.4wg 1.7dg 繰り返し数 =2
gr2 <- c( 30,39,31,44,49,44,39,45,37,40,41,41,45,36,43,40,49,44,32,39,49,38,49,38,36,53,42,37,46,47,44,54,48,36,43,38,41,45 ,
49,46,35,31,35,29,51,39,49,48,37,34,36,35,47,38,31,34,33,48,40,51,42,39,40,42,47,28,43,44,38,41,41,46,28,40,53,38,46,44,40)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -3.8532, 自由度 = 446, P値 = 0.0001337
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -4.632575 -1.503132
標本推定値:
平均値x 平均値y
38.04607 41.11392
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -3.9629, 自由度 = 117.313, P値 = 0.0001276
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -4.600967 -1.534741
標本推定値:
平均値x 平均値y
38.04607 41.11392
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.0904, 第1自由度 = 368, 第2自由度 = 78, P値 = 0.6546
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.7551789 1.5132071
標本推定値:
分散比
1.09039
有意。分散が異なるので(Welchの方法)を使用する。

>
105名無しに影響はない(栃木県):2012/07/15(日) 22:39:21.58 ID:1J/lQEev
3.補足コメント
41.11392 - 38.04607 = 3.067848 CPM (1.44Bq)
1.44 * 1000 / 12.4 = 116Bq/kg
外観から夏みかんと思われるが、著者ははっさく等との区別がつけられない。
カリウム 110-190 mg/100g ( http://www.kudamononavi.com/zukan/citrus.htm 夏みかん:カリウム(190mg)、はっさく:カリウム(180mg)、日向夏:カリウム(110mg)、ブンタン:カリウム(180mg)、ぽんかん:カリウム(160mg) )より、3.4-5.9Bq/kg。
よって、ほとんどが福島由来のセシウム等である。
106名無しに影響はない(栃木県):2012/07/22(日) 20:22:50.34 ID:KXZv+XXh
1.測定対象
「茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg」の分析

2.測定結果
1. n=30 糊台
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42)

2. n=30 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg
x <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48)

3. n=36 糊台
x <- c( 39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38)

4. n=30 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg
x <- c( 64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)

5. n=30 糊台
x <- c( 37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
107名無しに影響はない(栃木県):2012/07/22(日) 20:24:38.59 ID:KXZv+XXh
4. データ貼り付け
全体の分析
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 47.13462
> var(x)
[1] 188.7624
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 97.3449, 第1自由度 = 4, 第2自由度 = 151, P値 < 2.2e-16
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 11.706, 自由度 = 4, P値 = 0.01968
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 92.0698, 第1自由度 = 4.000, 第2自由度 = 73.085, P値 < 2.2e-16
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.6410256 0.6410256
25 9 5.7692308 6.4102564
30 16 10.2564103 16.6666667
35 34 21.7948718 38.4615385
40 23 14.7435897 53.2051282
45 13 8.3333333 61.5384615
50 11 7.0512821 68.5897436
55 16 10.2564103 78.8461538
60 14 8.9743590 87.8205128
65 8 5.1282051 92.9487179
70 4 2.5641026 95.5128205
75 5 3.2051282 98.7179487
80 2 1.2820513 100.0000000
>
108名無しに影響はない(栃木県):2012/07/22(日) 20:25:14.54 ID:KXZv+XXh
BGと試料の比較
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 349.4101, 第1自由度 = 1, 第2自由度 = 154, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 8.2533, 自由度 = 1, P値 = 0.004068
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 300.974, 第1自由度 = 1.000, 第2自由度 = 96.834, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

>

109名無しに影響はない(栃木県):2012/07/22(日) 20:26:36.01 ID:KXZv+XXh
繰り返しによる影響

1. n = 96 BG 繰り返し数 =3
x <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.11458
> var(x)
[1] 42.69200
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.943, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.009118
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.2586, 自由度 = 2, P値 = 0.3233
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 5.4039, 第1自由度 = 2.000, 第2自由度 = 58.496, P値 = 0.007021
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 1.041667 1.041667
25 9 9.375000 10.416667
30 16 16.666667 27.083333
35 34 35.416667 62.500000
40 22 22.916667 85.416667
45 10 10.416667 95.833333
50 3 3.125000 98.958333
55 1 1.041667 100.000000
>
110名無しに影響はない(栃木県):2012/07/22(日) 20:27:34.93 ID:KXZv+XXh
2. n = 60 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg 繰り返し数 =2
x <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 61.56667
> var(x)
[1] 82.96158
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 4.9524, 第1自由度 = 1, 第2自由度 = 58, P値 = 0.02996
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.0269, 自由度 = 1, P値 = 0.3109
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 4.9524, 第1自由度 = 1.000, 第2自由度 = 56.018, P値 = 0.03010
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
40 1 1.666667 1.666667
45 3 5.000000 6.666667
50 8 13.333333 20.000000
55 15 25.000000 45.000000
60 14 23.333333 68.333333
65 8 13.333333 81.666667
70 4 6.666667 88.333333
75 5 8.333333 96.666667
80 2 3.333333 100.000000
>
111名無しに影響はない(栃木県):2012/07/22(日) 20:28:22.08 ID:KXZv+XXh
BGと試料の比較

1. n = 96 BG 繰り返し数 =3
gr1 <- c( 37,32,56,42,29,37,44,43,37,48,33,36,29,29,44,29,43,42,37,37,45,39,47,34,42,53,46,48,38,42 ,
39,32,37,40,33,37,33,31,35,42,33,43,35,36,49,36,35,42,31,41,33,33,36,29,30,41,35,36,36,43,39,25,22,36,27,38 ,
37,36,35,42,44,38,38,47,38,45,27,32,47,43,38,33,34,35,37,44,50,44,49,53,44,40,28,37,30,37)

2. n = 60 茨城産キャベツの葉 2012.06.12 スーパーのゴミ箱より入手 5.3dg 繰り返し数 =2
gr2 <- c( 68,52,61,51,84,67,62,63,52,57,55,59,52,40,49,77,64,61,63,55,59,51,75,45,63,56,55,70,57,48 ,
64,65,64,70,58,84,67,60,64,69,51,76,64,53,67,61,57,59,76,59,73,58,55,65,70,67,50,59,62,76)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -18.6925, 自由度 = 154, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -25.93058 -20.97359
標本推定値:
平均値x 平均値y
38.11458 61.56667
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -17.3486, 自由度 = 96.834, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -26.13512 -20.76905
標本推定値:
平均値x 平均値y
38.11458 61.56667
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.5146, 第1自由度 = 95, 第2自由度 = 59, P値 = 0.003833
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3197390 0.8074844
標本推定値:
分散比
0.5145996
有意。分散が異なるので(Welchの方法)を使用する。

>
112名無しに影響はない(栃木県):2012/07/22(日) 20:30:10.64 ID:KXZv+XXh
3.補足コメント
61.56667 - 38.11458 = 23.45209 CPM (11.0Bq)
11.0 * 1000 / 5.3 = 2079Bq/kg
水分 92.7 %, カリウム 200mg /100g (6.18 Bq/kg) ( http://www.yasainavi.com/eiyou/eiyouhyouseparate/101 )より
乾燥前の線量
2079 * 7.3 / 100 = 151 Bq/kg
よりもカリウム由来線量ははるかに少ない
113名無しに影響はない(やわらか銀行):2012/07/28(土) 01:17:29.73 ID:4CqaMv3z
肥料や農薬が汚染していたら九州四国の野菜も汚染しそうですね。
114名無しに影響はない(栃木県):2012/08/02(木) 20:14:03.91 ID:c8glUN+E
>>113
天気図を見ていると、
福島からのほこりが東京上空をすり抜けて、九州四国に上陸したり
福島から、佐渡上空をすり抜けて中国四国に流れ込んでゆく様子が見当つきます。
ここに産廃焼却物(汚染地区産ダンボール廃棄物等)や肥料(食料品廃棄物を含む)が流れ込むことになるでしょう。
入手が困難で野菜の分析をしていませんが、大阪・兵庫・長崎の住所が書いてある乾燥食品は結構高いです。
では、いってみますか。

1.測定対象
「栃木県内で販売されていた桃。55.6wg」6.4dgの分析
桃を適当に切断し、プリンカップ内で乾燥。たれた汁を含めて測定した。したがって、種を除いている。
「空試験」は、糊台の上に、ポリ袋(ジップロック お手軽バッグ 小 )に入れた No.160 プリンカップ(小) 霧島製作所( http://item.rakuten.co.jp/b-stage/4962817261608/ )を置いた状態。

2.測定結果
1. n=30 糊台
x <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41)

2. n=30 空試験
x <- c( 38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36)

3. n=31 2012.07.12入手。栃木県内で販売されていた桃。55.6wg
x <- c( 45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43)

4. n=60 空試験
x <- c( 44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,
46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37)

5. n=30 2012.07.12入手。栃木県内で販売されていた桃。55.6wg
x <- c( 40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40)

6. n=30 空試験
x <- c( 32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36)

7. n=31 糊台
x <- c( 38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)
115名無しに影響はない(栃木県):2012/08/02(木) 20:15:03.14 ID:c8glUN+E
4. データ貼り付け

全体の分析
x <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41 ,
38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36 ,
38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5 ,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6 ,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7)
> mean(x)
[1] 38.96694
> var(x)
[1] 49.06944
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 9.1952, 第1自由度 = 6, 第2自由度 = 235, P値 = 4.763e-09
有意。群間に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 9.9331, 自由度 = 6, P値 = 0.1275
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 7.9609, 第1自由度 = 6.000, 第2自由度 = 93.984, P値 = 5.949e-07
有意。群間に差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 0.8264463 0.8264463
25 22 9.0909091 9.9173554
30 39 16.1157025 26.0330579
35 68 28.0991736 54.1322314
40 51 21.0743802 75.2066116
45 44 18.1818182 93.3884298
50 14 5.7851240 99.1735537
55 1 0.4132231 99.5867769
60 1 0.4132231 100.0000000
>
116名無しに影響はない(栃木県):2012/08/02(木) 20:15:45.85 ID:c8glUN+E
BGと空試験と試料の比較
x <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41 ,
38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36 ,
38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 24.1871, 第1自由度 = 2, 第2自由度 = 239, P値 = 2.717e-10
有意。BGと空試験と試料に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.4959, 自由度 = 2, P値 = 0.2871
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 23.2284, 第1自由度 = 2.000, 第2自由度 = 121.992, P値 = 2.833e-09
有意。BGと空試験と試料に差がある。

>
117名無しに影響はない(栃木県):2012/08/02(木) 20:17:01.02 ID:c8glUN+E
繰り返しによる影響

1. n = 61 BG 繰り返し数 =2
x <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41 ,
38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 36.45902
> var(x)
[1] 50.91913
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.016, 第1自由度 = 1, 第2自由度 = 59, P値 = 0.1609
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.0057, 自由度 = 1, P値 = 0.9398
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.0169, 第1自由度 = 1.000, 第2自由度 = 58.978, P値 = 0.1608
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 14 22.950820 22.95082
30 10 16.393443 39.34426
35 14 22.950820 62.29508
40 14 22.950820 85.24590
45 7 11.475410 96.72131
50 2 3.278689 100.00000
>
118名無しに影響はない(栃木県):2012/08/02(木) 20:17:46.16 ID:c8glUN+E
2. n = 120 空試験 繰り返し数 =3
x <- c( 38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 37.775
> var(x)
[1] 35.94055
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.1421, 第1自由度 = 2, 第2自由度 = 117, P値 = 0.122
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 7.2977, 自由度 = 2, P値 = 0.02602
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.4596, 第1自由度 = 2.000, 第2自由度 = 56.194, P値 = 0.241
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.666667 1.666667
25 8 6.666667 8.333333
30 22 18.333333 26.666667
35 43 35.833333 62.500000
40 27 22.500000 85.000000
45 15 12.500000 97.500000
50 3 2.500000 100.000000
>
119名無しに影響はない(栃木県):2012/08/02(木) 20:18:46.12 ID:c8glUN+E
3. n = 61 2012.07.12入手。栃木県内で販売されていた桃。55.6wg 繰り返し数 =2
x <- c( 45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 43.81967
> var(x)
[1] 41.71694
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.1372, 第1自由度 = 1, 第2自由度 = 59, P値 = 0.7124
有意ではない。繰り返しによる差は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.102, 自由度 = 1, P値 = 0.7494
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.1369, 第1自由度 = 1.000, 第2自由度 = 58.499, P値 = 0.7127
有意ではない。繰り返しによる差は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
30 7 11.475410 11.47541
35 11 18.032787 29.50820
40 10 16.393443 45.90164
45 22 36.065574 81.96721
50 9 14.754098 96.72131
55 1 1.639344 98.36066
60 1 1.639344 100.00000
>
120名無しに影響はない(栃木県):2012/08/02(木) 20:19:46.46 ID:c8glUN+E
BGと試料の比較

1. n = 61 BG 繰り返し数 =2
gr1 <- c( 44,37,33,39,46,51,35,34,36,32,25,36,44,41,40,36,47,29,34,53,41,30,46,41,35,40,25,29,33,41 ,
38,27,26,25,30,26,46,46,37,27,42,29,28,26,42,34,42,35,35,44,42,36,37,27,47,35,40,46,34,28,34)

2. n = 120 空試験 繰り返し数 =3
gr2 <- c( 38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -1.3076, 自由度 = 179, P値 = 0.1927
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.3019181 0.6699509
標本推定値:
平均値x 平均値y
36.45902 37.77500
有意。バックグラウンドと空試験に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -1.2357, 自由度 = 104.028, P値 = 0.2194
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.4279299 0.7959627
標本推定値:
平均値x 平均値y
36.45902 37.77500
有意。バックグラウンドと空試験に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.4168, 第1自由度 = 60, 第2自由度 = 119, P値 = 0.1091
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.9253192 2.2410315
標本推定値:
分散比
1.41676
有意。分散が異なるので(Welchの方法)を使用する。

>
121名無しに影響はない(栃木県):2012/08/02(木) 20:20:48.09 ID:c8glUN+E
BGと試料の比較
3. n = 61 2012.07.12入手。栃木県内で販売されていた桃。55.6wg 繰り返し数 =2
gr2 <- c( 45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -5.973, 自由度 = 120, P値 = 2.441e-08
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -9.800573 -4.920739
標本推定値:
平均値x 平均値y
36.45902 43.81967
有意。バックグラウンドと試料に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -5.973, 自由度 = 118.827, P値 = 2.489e-08
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -9.800818 -4.920493
標本推定値:
平均値x 平均値y
36.45902 43.81967
有意。バックグラウンドと試料に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.2206, 第1自由度 = 60, 第2自由度 = 60, P値 = 0.4424
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.7322973 2.0344620
標本推定値:
分散比
1.220586
有意。分散が異なるので(Welchの方法)を使用する。

>

122名無しに影響はない(栃木県):2012/08/02(木) 20:21:46.05 ID:c8glUN+E
空試験と試料の比較

gr1 <- c( 38,28,53,38,45,31,27,37,29,40,45,30,34,27,27,41,38,36,32,23,44,43,26,54,39,32,33,38,31,36 ,
44,38,37,46,38,37,41,37,34,30,40,45,46,47,39,45,34,32,36,32,41,42,43,33,35,32,39,41,39,35,35,46,41,39,38,41,53,42,39,36,38,33,33,29,42,41,35,38,24,33,40,40,32,35,40,42,42,45,36,37 ,
32,40,37,33,33,49,39,35,40,42,48,38,37,32,38,36,48,47,40,35,36,35,45,38,40,35,25,40,46,36)
gr2 <- c( 45,46,38,38,44,34,31,49,47,37,42,52,50,39,48,50,46,49,33,41,40,34,47,48,39,53,36,51,47,52,43 ,
40,45,52,45,35,47,39,34,50,42,55,34,43,47,45,48,46,46,37,33,49,48,51,49,39,37,45,62,41,40)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -6.246, 自由度 = 179, P値 = 2.981e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -7.954369 -4.134975
標本推定値:
平均値x 平均値y
37.77500 43.81967
有意。空試験と試料に差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -6.0955, 自由度 = 113.122, P値 = 1.550e-08
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -8.009306 -4.080038
標本推定値:
平均値x 平均値y
37.77500 43.81967
有意。空試験と試料に差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8615, 第1自由度 = 119, 第2自由度 = 60, P値 = 0.488
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5446538 1.3190975
標本推定値:
分散比
0.8615336
有意。分散が異なるので(Welchの方法)を使用する。

>
123名無しに影響はない(栃木県):2012/08/02(木) 20:26:20.80 ID:c8glUN+E
3.補足コメント
「栃木県内で販売されていた桃。55.6wg」6.4dgの分析
43.81967 - 37.77500 = 6.04467CPM (2.84Bq)
2.84 * 1000 / 55.6 = 51.1 Bq/kg
2.84 * 1000 / 6.4 = 444 Bq/dkg
カリウム 180mg/100g ( http://www.kudamononavi.com/eiyou/eiyouhyouseparate/135 ) より、5.5Bq/kg
水分 88% ( http://www.kudamononavi.com/eiyou/eiyouhyouseparate/135 )

連投制限の関係であまり出せませんが、私が購入する範囲では、
汚染されていない食品が稀です。
自家製野菜を放置して乾かしてしまうと、0.2uSvなんて頻繁に見かけます。
ごみ減量のため、野菜くずをある程度乾かしてから廃棄していますが、これがかなり高いです。
124名無しに影響はない(栃木県):2012/08/02(木) 21:22:08.66 ID:c8glUN+E
1.測定対象
「栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥」の分析
99.3wg, 11.9 dg

2.測定結果
試料の132棄却後
1. n=40 糊台
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)

2. n=31 栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥
x <- c( 47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90, 52,52,43,53,47,38)
132を棄却

3. n=42 糊台
x <- c( 39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38)

4. n=32 栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥
x <- c( 47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39)

5. n=38 糊台
x <- c( 34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)
125名無しに影響はない(栃木県):2012/08/02(木) 21:23:19.53 ID:c8glUN+E
2.測定結果
全体の分析
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26 ,
47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90,52,52,43,53,47,38 ,
39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38 ,
47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39 ,
34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 40.83516
> var(x)
[1] 81.59699
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 20.0223, 第1自由度 = 4, 第2自由度 = 177, P値 = 1.286e-13
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 9.7632, 自由度 = 4, P値 = 0.04461
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 16.6273, 第1自由度 = 4.000, 第2自由度 = 84.046, P値 = 4.489e-10
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.5494505 0.5494505
25 13 7.1428571 7.6923077
30 30 16.4835165 24.1758242
35 46 25.2747253 49.4505495
40 35 19.2307692 68.6813187
45 30 16.4835165 85.1648352
50 15 8.2417582 93.4065934
55 8 4.3956044 97.8021978
60 3 1.6483516 99.4505495
65 0 0.0000000 99.4505495
70 0 0.0000000 99.4505495
75 0 0.0000000 99.4505495
80 0 0.0000000 99.4505495
85 0 0.0000000 99.4505495
90 1 0.5494505 100.0000000
>
126名無しに影響はない(栃木県):2012/08/02(木) 21:24:02.08 ID:c8glUN+E
BGと試料の比較
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26 ,
47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90, 52,52,43,53,47,38 ,
39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38 ,
47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39 ,
34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 77.4715, 第1自由度 = 1, 第2自由度 = 180, P値 = 1.091e-15
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 6.7768, 自由度 = 1, P値 = 0.009235
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 64.8596, 第1自由度 = 1.000, 第2自由度 = 97.673, P値 = 1.987e-12
有意。試料とバックグラウンドに差異がある。

>
127名無しに影響はない(栃木県):2012/08/02(木) 21:24:45.70 ID:c8glUN+E
繰り返しによる影響

1. n = 120 BG 繰り返し数 =3
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26 ,
39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38 ,
34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 37.28333
> var(x)
[1] 45.56611
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.4855, 第1自由度 = 2, 第2自由度 = 117, P値 = 0.6166
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.3386, 自由度 = 2, P値 = 0.5121
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.5247, 第1自由度 = 2.000, 第2自由度 = 76.936, P値 = 0.5938
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 1 0.8333333 0.8333333
25 12 10.0000000 10.8333333
30 30 25.0000000 35.8333333
35 37 30.8333333 66.6666667
40 22 18.3333333 85.0000000
45 14 11.6666667 96.6666667
50 2 1.6666667 98.3333333
55 2 1.6666667 100.0000000
>

128名無しに影響はない(栃木県):2012/08/02(木) 21:25:31.94 ID:c8glUN+E
2. n = 63 栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥 繰り返し数 =2
x <- c( 47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90,52,52,43,53,47,38 ,
47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 47.70968
> var(x)
[1] 80.37335
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.4073, 第1自由度 = 1, 第2自由度 = 60, P値 = 0.2402
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.1427, 自由度 = 1, P値 = 0.1433
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.3831, 第1自由度 = 1.000, 第2自由度 = 54.194, P値 = 0.2447
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 1 1.612903 1.612903
30 0 0.000000 1.612903
35 9 14.516129 16.129032
40 13 20.967742 37.096774
45 16 25.806452 62.903226
50 13 20.967742 83.870968
55 6 9.677419 93.548387
60 3 4.838710 98.387097
65 0 0.000000 98.387097
70 0 0.000000 98.387097
75 0 0.000000 98.387097
80 0 0.000000 98.387097
85 0 0.000000 98.387097
90 1 1.612903 100.000000
>
129名無しに影響はない(栃木県):2012/08/02(木) 21:26:02.54 ID:c8glUN+E
BGと試料の比較

1. n = 120 BG 繰り返し数 =3
gr1 <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26 ,
39,42,40,37,48,43,39,32,31,28,35,25,37,39,33,42,47,35,35,32,41,34,35,40,52,43,36,35,29,29,36,44,43,32,57,26,36,30,39,40,47,38 ,
34,29,36,32,34,40,45,30,48,30,36,34,33,24,44,35,48,35,58,34,42,48,37,47,34,45,32,37,38,46,29,31,39,41,34,48,26,43)

2. n = 63 栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥 繰り返し数 =2
gr2 <- c( 47,49,50,42,41,42,40,45,45,44,51,57,64,48,48,44,45,62,36,47,56,52,43,90, 52,52,43,53,47,38 ,
47,45,43,54,50,54,43,38,50,42,57,46,50,36,39,37,28,59,44,60,53,47,48,55,57,38,36,48,49,51,42,39)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -8.8018, 自由度 = 180, P値 = 1.091e-15
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -12.763775 -8.088913
標本推定値:
平均値x 平均値y
37.28333 47.70968
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -8.0535, 自由度 = 97.673, P値 = 1.987e-12
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -12.99560 -7.85709
標本推定値:
平均値x 平均値y
37.28333 47.70968
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.5669, 第1自由度 = 119, 第2自由度 = 61, P値 = 0.008592
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3594871 0.8663611
標本推定値:
分散比
0.5669306
有意。分散が異なるので(Welchの方法)を使用する。

>
130名無しに影響はない(栃木県):2012/08/02(木) 21:31:15.95 ID:c8glUN+E
3.補足コメント
「栃木県産草イチゴの実 2012.07.11収穫, 50度1週間乾燥」99.3wg, 11.9 dg
47.70968 - 37.28333 = 10.42635 CPM (4.90Bq)
4.90 * 1000 / 99.3 = 49.3 Bq/kg
4.90 * 1000 / 11.9 = 411 Bq/kg
カリウム 170mg/100g( http://www42.tok2.com/home/syokuhin/itigo.html )より、5.2Bq/kg

草イチゴ、食用になる野イチゴです。道路沿いなどの藪の中に生育する多年生つる草で
梅雨の頃に実ります。日溜りの良い傾斜地の下のほうに生育しやすいので、線量が比較的高い場所に生育しやすいです。
地域によっては、異なる場所に生育している場合があります。
園芸板 【野苺】ワイルドストロベリー【ノイチゴ】 10株目
http://awabi.2ch.net/test/read.cgi/engei/1277203312/l50
131名無しに影響はない(栃木県):2012/08/02(木) 22:15:49.43 ID:c8glUN+E
1.測定対象
「栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥」の分析
45.5wg, 10.1 dg(猫により試料の一部消失)

2.測定結果
1. n=55 糊台
x <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45)

2. n=33 栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥
x <- c( 51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46)

3. n=30 糊台
x <- c( 37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34)

4. n=34 栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥
x <- c( 42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40)

5. n=40 糊台
x <- c( 41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)
132名無しに影響はない(栃木県):2012/08/02(木) 22:16:33.50 ID:c8glUN+E
4. データ貼り付け
全体の分析
x <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45 ,
51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46 ,
37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34 ,
42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40 ,
41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 38.67708
> var(x)
[1] 49.46586
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 12.9571, 第1自由度 = 4, 第2自由度 = 187, P値 = 2.479e-09
有意。群間に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 6.9181, 自由度 = 4, P値 = 0.1403
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 11.041, 第1自由度 = 4.000, 第2自由度 = 84.489, P値 = 2.99e-07
有意。群間に差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.041667 1.041667
25 15 7.812500 8.854167
30 39 20.312500 29.166667
35 54 28.125000 57.291667
40 48 25.000000 82.291667
45 22 11.458333 93.750000
50 5 2.604167 96.354167
55 5 2.604167 98.958333
60 2 1.041667 100.000000
>
133名無しに影響はない(栃木県):2012/08/02(木) 22:17:16.27 ID:c8glUN+E
BGと試料の比較
x <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45 ,
51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46 ,
37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34 ,
42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40 ,
41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 49.8364, 第1自由度 = 1, 第2自由度 = 190, P値 = 3.052e-11
有意。試料とバックグランンドに差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 5.3927, 自由度 = 1, P値 = 0.02022
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 43.0362, 第1自由度 = 1.000, 第2自由度 = 110.067, P値 = 1.813e-09
有意。試料とバックグランンドに差がある。

>

134名無しに影響はない(栃木県):2012/08/02(木) 22:18:02.41 ID:c8glUN+E
繰り返しによる影響

1. n = 125 BG 繰り返し数 =3
x <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45 ,
37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34 ,
41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 36.336
> var(x)
[1] 32.27329
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.5928, 第1自由度 = 2, 第2自由度 = 122, P値 = 0.5544
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.2602, 自由度 = 2, P値 = 0.5325
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.5987, 第1自由度 = 2.00, 第2自由度 = 68.11, P値 = 0.5524
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.6 1.6
25 14 11.2 12.8
30 33 26.4 39.2
35 39 31.2 70.4
40 26 20.8 91.2
45 10 8.0 99.2
50 1 0.8 100.0
>
135名無しに影響はない(栃木県):2012/08/02(木) 22:18:46.18 ID:c8glUN+E
2. n = 67 栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥 繰り返し数 =2
x <- c( 51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46 ,
42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 43.04478
> var(x)
[1] 52.77069
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.9195, 第1自由度 = 1, 第2自由度 = 65, P値 = 0.3412
有意。繰り返しによる差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.4905, 自由度 = 1, P値 = 0.4837
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.916, 第1自由度 = 1.000, 第2自由度 = 63.507, P値 = 0.3421
有意。繰り返しによる差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 1 1.492537 1.492537
30 6 8.955224 10.447761
35 15 22.388060 32.835821
40 22 32.835821 65.671642
45 12 17.910448 83.582090
50 4 5.970149 89.552239
55 5 7.462687 97.014925
60 2 2.985075 100.000000
>
136名無しに影響はない(栃木県):2012/08/02(木) 22:19:31.14 ID:c8glUN+E
BGと試料の比較

1. n = 125 BG 繰り返し数 =3
gr1 <- c( 43,37,31,43,26,42,40,29,34,27,38,45,45,38,40,32,36,40,33,41,35,35,28,33,35,32,28,37,28,32,37,38,33,33,39,36,39,37,28,36,23,34,40,36,31,37,36,42,45,40,33,41,33,34,45 ,
37,38,34,32,49,42,24,34,41,41,33,38,28,43,49,44,37,41,37,29,29,41,38,37,34,40,33,34,45,34 ,
41,34,33,36,49,35,41,32,27,33,41,51,38,38,45,38,35,34,30,36,49,31,44,33,35,37,38,42,35,35,33,25,36,29,31,35,44,30,42,26)

2. n = 67 栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥 繰り返し数 =2
gr2 <- c( 51,57,42,47,44,36,49,42,50,34,39,47,61,44,51,55,43,44,55,35,47,43,48,45,48,39,32,31,35,40,41,28,46 ,
42,44,37,39,41,62,50,42,38,30,42,36,39,37,42,48,47,46,41,35,44,33,39,56,42,33,42,43,57,38,44,48,38,40)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -7.0595, 自由度 = 190, P値 = 3.052e-11
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -8.583310 -4.834242
標本推定値:
平均値x 平均値y
36.33600 43.04478
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -6.5602, 自由度 = 110.067, P値 = 1.813e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -8.735410 -4.682142
標本推定値:
平均値x 平均値y
36.33600 43.04478
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.6116, 第1自由度 = 124, 第2自由度 = 66, P値 = 0.01904
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.3941570 0.9228036
標本推定値:
分散比
0.611576
有意。分散が異なるので(Welchの方法)を使用する。
137名無しに影響はない(栃木県):2012/08/02(木) 22:20:22.57 ID:c8glUN+E
3.補足コメント
「栃木県産桑の実 2012.07.11収穫, 50度1週間乾燥」45.5wg, 10.1 dg(猫が保存していた袋を破ったため試料の一部消失)
43.04478 - 36.33600 = 6.708782 CPM (3.15Bq)
3.15 * 1000 / 45.5 = 69.3Bq/kg
3.15 * 1000 / 10.1 = 312Bq/kg
カリウム 234mg/100g ( http://www.momo-kuwa.com/jiten.html ) - 293mg/100g( http://www.kai-shokokai.jp/kuwanomi/ingredient/ )より、7.2-9.5Bq/kg

桑の実は食用になります。草イチゴにしても桑の実にしても、現地に出かけて、その場で口に放り込むという食べ方をします。
http://pixta.jp/tags/%E6%A1%91%E3%81%AE%E5%AE%9Fを見ると黒っぽい実が多いのですが、熟しても赤い実のクワの実です。
138名無しに影響はない(栃木県):2012/08/03(金) 19:34:43.21 ID:QY4jmAJS
1.測定対象
「栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06」の分析

2.測定結果
1. n=35 糊台
x <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42)

2. n=46 栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06 6日間乾燥
x <- c( 40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41)

3. n=74 糊台
x <- c( 35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,
30,39,36,33,41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41)

4. n=33 栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06 6日間乾燥
x <- c( 39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37)

5. n=30 糊台
x <- c( 33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)
139名無しに影響はない(栃木県):2012/08/03(金) 19:35:43.86 ID:QY4jmAJS
4. データ貼り付け
全体の分析
x <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42 ,
40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41 ,
35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,30,
39,36,33,41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41 ,
39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37 ,
33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 40.25688
> var(x)
[1] 50.21021
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 9.9357, 第1自由度 = 4, 第2自由度 = 213, P値 = 2.169e-07
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.7347, 自由度 = 4, P値 = 0.4431
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 9.1963, 第1自由度 = 4.000, 第2自由度 = 89.627, P値 = 2.848e-06
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 4.1284404 4.12844
30 35 16.0550459 20.18349
35 61 27.9816514 48.16514
40 61 27.9816514 76.14679
45 26 11.9266055 88.07339
50 18 8.2568807 96.33028
55 7 3.2110092 99.54128
60 1 0.4587156 100.00000
>
140名無しに影響はない(栃木県):2012/08/03(金) 19:36:31.46 ID:QY4jmAJS
BGと試料の比較
x <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42 ,
40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41 ,
35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,30,39,36,33,
41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41 ,
39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37 ,
33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 38.3633, 第1自由度 = 1, 第2自由度 = 216, P値 = 2.926e-09
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.323, 自由度 = 1, P値 = 0.5698
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 37.1783, 第1自由度 = 1.000, 第2自由度 = 154.711, P値 = 8.26e-09
有意。試料とバックグラウンドに差異がある。

>
141名無しに影響はない(栃木県):2012/08/03(金) 19:37:32.72 ID:QY4jmAJS
繰り返しによる影響

1. n = 139 BG 繰り返し数 =3
x <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42 ,
35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,30,39,
36,33,41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41 ,
33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 38.18705
> var(x)
[1] 41.05172
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.1462, 第1自由度 = 2, 第2自由度 = 136, P値 = 0.8641
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.1473, 自由度 = 2, P値 = 0.929
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.1509, 第1自由度 = 2.000, 第2自由度 = 66.709, P値 = 0.8602
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 9 6.474820 6.47482
30 31 22.302158 28.77698
35 44 31.654676 60.43165
40 36 25.899281 86.33094
45 10 7.194245 93.52518
50 7 5.035971 98.56115
55 2 1.438849 100.00000
>
142名無しに影響はない(栃木県):2012/08/03(金) 19:38:17.31 ID:QY4jmAJS
2. n = 79 栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06 6日間乾燥 繰り返し数 =2
x <- c( 40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41 ,
39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 43.89873
> var(x)
[1] 45.98961
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.2622, 第1自由度 = 1, 第2自由度 = 77, P値 = 0.2647
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.3429, 自由度 = 1, P値 = 0.0675
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.1459, 第1自由度 = 1.000, 第2自由度 = 56.064, P値 = 0.289
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
30 4 5.063291 5.063291
35 17 21.518987 26.582278
40 25 31.645570 58.227848
45 16 20.253165 78.481013
50 11 13.924051 92.405063
55 5 6.329114 98.734177
60 1 1.265823 100.000000
>
143名無しに影響はない(栃木県):2012/08/03(金) 19:38:48.12 ID:QY4jmAJS
BGと試料の比較

1. n = 139 BG 繰り返し数 =3
gr1 <- c( 49,34,38,36,35,53,26,43,42,30,39,35,31,33,38,32,35,43,52,40,41,36,42,43,41,42,33,34,35,41,31,27,36,35,42 ,
35,45,35,37,42,39,32,45,45,39,31,52,34,42,39,35,32,35,32,39,34,28,34,34,35,36,34,44,37,35,42,42,35,32,26,38,30,39,36,
33,41,41,41,35,48,48,43,52,44,58,33,37,36,52,32,32,25,30,50,37,30,40,35,36,43,43,39,53,38,39,29,40,35,41 ,
33,28,28,36,42,43,40,28,38,35,42,45,36,40,34,30,42,43,39,37,34,44,42,32,47,46,55,42,34,45)

2. n = 79 栃木県産ジャガイモ 30.5wg 9.8dg 2012.07.06 6日間乾燥 繰り返し数 =2
gr2 <- c( 40,35,46,43,41,50,37,55,47,39,43,43,54,50,40,59,45,32,44,43,51,43,45,48,38,38,36,41,40,52,46,40,43,40,50,38,37,43,42,43,43,38,44,31,49,41 ,
39,53,44,36,50,42,59,49,30,44,35,49,45,61,37,36,53,35,45,56,56,44,45,53,45,48,51,35,42,34,47,47,37)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -6.1938, 自由度 = 216, P値 = 2.926e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -7.529266 -3.894101
標本推定値:
平均値x 平均値y
38.18705 43.89873
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -6.0974, 自由度 = 154.711, P値 = 8.26e-09
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -7.562136 -3.861231
標本推定値:
平均値x 平均値y
38.18705 43.89873
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8926, 第1自由度 = 138, 第2自由度 = 78, P値 = 0.5572
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5947746 1.3106013
標本推定値:
分散比
0.8926301
有意。分散が異なるので(Welchの方法)を使用する。

>
144名無しに影響はない(栃木県):2012/08/03(金) 19:39:18.55 ID:QY4jmAJS
43.89873 - 38.18705 = 5.711681 CPM (2.68Bq)
2.69 * 1000 / 30.5 = 88.0 Bq/wkg
2.69 * 1000 / 9.8 = 273 Bq/dkg
145名無しに影響はない(栃木県):2012/08/03(金) 20:38:00.69 ID:QY4jmAJS
1.測定対象
「栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得」の分析

2.測定結果
1. n=30 糊台
x <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44)

2. n=30 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得
x <- c( 31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51)

3. n=30 糊台
x <- c( 34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30)

4. n=31 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得
x <- c( 40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42)

5. n=30 糊台
x <- c( 39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)
146名無しに影響はない(栃木県):2012/08/03(金) 20:38:58.47 ID:QY4jmAJS
4. データ貼り付け
全体の分析
x <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44 ,
31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51 ,
34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30 ,
40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42 ,
39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 39.06623
> var(x)
[1] 47.64892
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 5.1946, 第1自由度 = 4, 第2自由度 = 146, P値 = 0.0006104
有意。群間に差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 3.7831, 自由度 = 4, P値 = 0.4362
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 5.6152, 第1自由度 = 4.000, 第2自由度 = 72.723, P値 = 0.0005383
有意。群間に差がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 3 1.986755 1.986755
25 10 6.622517 8.609272
30 30 19.867550 28.476821
35 41 27.152318 55.629139
40 35 23.178808 78.807947
45 20 13.245033 92.052980
50 10 6.622517 98.675497
55 2 1.324503 100.000000
>
147名無しに影響はない(栃木県):2012/08/03(金) 20:39:44.32 ID:QY4jmAJS
BGと試料の比較
x <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44 ,
31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51 ,
34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30 ,
40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42 ,
39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 18.6345, 第1自由度 = 1, 第2自由度 = 149, P値 = 2.873e-05
有意。試料とバックグラウンドに差がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 0.3483, 自由度 = 1, P値 = 0.5551
有意ではない。先の分散分析は有効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 18.1399, 第1自由度 = 1.000, 第2自由度 = 122.827, P値 = 4.043e-05
有意。試料とバックグラウンドに差がある。

>
148名無しに影響はない(栃木県):2012/08/03(金) 20:40:31.95 ID:QY4jmAJS
繰り返しによる影響

1. n = 90 BG 繰り返し数 =3
x <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44 ,
34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30 ,
39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 37.17778
> var(x)
[1] 40.21523
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.0408, 第1自由度 = 2, 第2自由度 = 87, P値 = 0.96
有意ではない。繰り返しによる差異は不明。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.3543, 自由度 = 2, P値 = 0.3082
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.0386, 第1自由度 = 2.000, 第2自由度 = 57.328, P値 = 0.9621
有意ではない。繰り返しによる差異は不明。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 3 3.333333 3.333333
25 9 10.000000 13.333333
30 21 23.333333 36.666667
35 27 30.000000 66.666667
40 18 20.000000 86.666667
45 10 11.111111 97.777778
50 2 2.222222 100.000000
>
149名無しに影響はない(栃木県):2012/08/03(金) 20:41:17.10 ID:QY4jmAJS
2. n = 61 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得 繰り返し数 =2
x <- c( 31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51 ,
40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 41.85246
> var(x)
[1] 46.22787
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.0378, 第1自由度 = 1, 第2自由度 = 59, P値 = 0.1587
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.2452, 自由度 = 1, P値 = 0.2645
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.0239, 第1自由度 = 1.000, 第2自由度 = 55.852, P値 = 0.1604
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 1 1.639344 1.639344
30 9 14.754098 16.393443
35 14 22.950820 39.344262
40 17 27.868852 67.213115
45 10 16.393443 83.606557
50 8 13.114754 96.721311
55 2 3.278689 100.000000
>
150名無しに影響はない(栃木県):2012/08/03(金) 20:41:55.96 ID:QY4jmAJS
BGと試料の比較

1. n = 90 BG 繰り返し数 =3
gr1 <- c( 34,39,42,34,27,43,26,36,45,33,44,48,31,36,33,41,34,34,28,36,45,41,32,37,37,40,34,39,41,44 ,
34,47,35,39,34,38,41,24,39,52,47,33,38,34,32,29,40,39,39,24,38,35,51,31,40,24,45,31,46,30 ,
39,29,47,48,33,44,43,34,35,27,27,31,35,36,45,36,39,43,44,28,43,29,39,38,39,44,33,37,42,36)

2. n = 61 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得 繰り返し数 =2
gr2 <- c( 31,29,50,56,33,53,36,51,45,40,47,43,38,34,37,46,37,37,37,35,43,41,47,47,43,34,30,31,36,51 ,
40,34,32,47,43,37,53,48,55,43,40,37,52,43,49,47,42,44,54,51,37,41,39,39,39,41,42,43,47,34,42)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -4.3168, 自由度 = 149, P値 = 2.873e-05
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -6.814527 -2.534835
標本推定値:
平均値x 平均値y
37.17778 41.85246
有意。試料とバックグラウンドに差がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -4.2591, 自由度 = 122.827, P値 = 4.043e-05
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -6.847293 -2.502069
標本推定値:
平均値x 平均値y
37.17778 41.85246
有意。試料とバックグラウンドに差がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8699, 第1自由度 = 89, 第2自由度 = 60, P値 = 0.5448
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5396328 1.3726646
標本推定値:
分散比
0.8699348
有意。分散が異なるので(Welchの方法)を使用する。

>
151名無しに影響はない(栃木県):2012/08/03(金) 20:43:09.78 ID:QY4jmAJS
3.補足コメント
41.85246 - 37.17778 = 4.674679 CPM (2.20Bq)
2. n = 61 栃木県産ホウノキの葉 3.5wg 2.0dg 2012.07.20取得 繰り返し数 =2
2.20 * 1000 / 3.5 = 627 Bq/wkg
2.20 * 1000 / 2.0 = 1099 Bq/dkg

ホウノキは、夏場防腐剤として使われることがあります。
152名無しに影響はない(栃木県):2012/08/03(金) 21:39:36.06 ID:QY4jmAJS
1.測定対象
「栃木県産ハリキリの葉 17.5wg 5.6dg 2012.07.12採取」の分析
柏餅用の葉として使用する。防腐剤が含まれているので、夏の保存食に使われる。

2.測定結果
1. n=30 糊台
x <- c( 40, 38, 27, 37, 36, 32, 40, 35, 29, 44, 35, 36, 40, 39, 37, 39, 33, 31, 35, 39, 31, 36, 38, 48, 32, 48, 35, 42, 45, 28)

2. n=30 栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取
x <- c( 49, 50, 55, 47, 61, 43, 52, 45, 53, 55, 49, 43, 49, 54, 66, 48, 46, 56, 52, 49, 54, 59, 47, 65, 52, 56, 57, 55, 57, 46)

3. n=30 糊台
x <- c( 38, 35, 36, 46, 41, 29, 33, 35, 34, 29, 31, 47, 39, 46, 37, 51, 38, 34, 44, 45, 54, 45, 37, 51, 38, 25, 26, 34, 29, 45)

4. n=30 栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取
x <- c( 47, 60, 55, 46, 55, 64, 48, 54, 64, 77, 48, 47, 44, 59, 52, 63, 55, 61, 64, 54, 38, 45, 73, 45, 58, 56, 60, 56, 50, 54)

5. n=30 糊台
x <- c( 36, 29, 27, 34, 27, 35, 30, 34, 28, 36, 25, 35, 23, 31, 30, 28, 37, 31, 35, 29, 24, 32, 30, 41, 34, 34, 29, 30, 22, 27)
153名無しに影響はない(栃木県):2012/08/03(金) 21:40:32.43 ID:QY4jmAJS
全体の分析
x <- c( 40,38,27,37,36,32,40,35,29,44,35,36,40,39,37,39,33,31,35,39,31,36,38,48,32,48,35,42,45,28 ,
49,50,55,47,61,43,52,45,53,55,49,43,49,54,66,48,46,56,52,49,54,59,47,65,52,56,57,55,57,46 ,
38,35,36,46,41,29,33,35,34,29,31,47,39,46,37,51,38,34,44,45,54,45,37,51,38,25,26,34,29,45 ,
47,60,55,46,55,64,48,54,64,77,48,47,44,59,52,63,55,61,64,54,38,45,73,45,58,56,60,56,50,54 ,
36,29,27,34,27,35,30,34,28,36,25,35,23,31,30,28,37,31,35,29,24,32,30,41,34,34,29,30,22,27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 ,
4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 42.68
> var(x)
[1] 130.9305
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 76.4086, 第1自由度 = 4, 第2自由度 = 145, P値 < 2.2e-16
有意。群間に差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 16.3109, 自由度 = 4, P値 = 0.002629
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 88.0846, 第1自由度 = 4.000, 第2自由度 = 71.577, P値 < 2.2e-16
有意。群間に差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 3 2.0000000 2.00000
25 17 11.3333333 13.33333
30 21 14.0000000 27.33333
35 30 20.0000000 47.33333
40 11 7.3333333 54.66667
45 26 17.3333333 72.00000
50 15 10.0000000 82.00000
55 15 10.0000000 92.00000
60 8 5.3333333 97.33333
65 2 1.3333333 98.66667
70 1 0.6666667 99.33333
75 1 0.6666667 100.00000
>
154名無しに影響はない(栃木県):2012/08/03(金) 21:41:17.15 ID:QY4jmAJS
BGと試料の比較
x <- c( 40,38,27,37,36,32,40,35,29,44,35,36,40,39,37,39,33,31,35,39,31,36,38,48,32,48,35,42,45,28 ,
49,50,55,47,61,43,52,45,53,55,49,43,49,54,66,48,46,56,52,49,54,59,47,65,52,56,57,55,57,46 ,
38,35,36,46,41,29,33,35,34,29,31,47,39,46,37,51,38,34,44,45,54,45,37,51,38,25,26,34,29,45 ,
47,60,55,46,55,64,48,54,64,77,48,47,44,59,52,63,55,61,64,54,38,45,73,45,58,56,60,56,50,54 ,
36,29,27,34,27,35,30,34,28,36,25,35,23,31,30,28,37,31,35,29,24,32,30,41,34,34,29,30,22,27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 76.4086, 第1自由度 = 4, 第2自由度 = 145, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 16.3109, 自由度 = 4, P値 = 0.002629
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 88.0846, 第1自由度 = 4.000, 第2自由度 = 71.577, P値 < 2.2e-16
有意。試料とバックグラウンドに差異がある。

>
155名無しに影響はない(栃木県):2012/08/03(金) 21:42:03.49 ID:QY4jmAJS
繰り返しによる影響

1. n = 90 BG 繰り返し数 =3
x <- c( 40,38,27,37,36,32,40,35,29,44,35,36,40,39,37,39,33,31,35,39,31,36,38,48,32,48,35,42,45,28 ,
38,35,36,46,41,29,33,35,34,29,31,47,39,46,37,51,38,34,44,45,54,45,37,51,38,25,26,34,29,45 ,
36,29,27,34,27,35,30,34,28,36,25,35,23,31,30,28,37,31,35,29,24,32,30,41,34,34,29,30,22,27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 35.33333
> var(x)
[1] 45.75281
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 13.6996, 第1自由度 = 2, 第2自由度 = 87, P値 = 6.725e-06
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 8.7621, 自由度 = 2, P値 = 0.01251
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 16.8141, 第1自由度 = 2.000, 第2自由度 = 55.844, P値 = 1.923e-06
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 3 3.333333 3.333333
25 17 18.888889 22.222222
30 21 23.333333 45.555556
35 29 32.222222 77.777778
40 8 8.888889 86.666667
45 9 10.000000 96.666667
50 3 3.333333 100.000000
>
156名無しに影響はない(栃木県):2012/08/03(金) 21:42:49.57 ID:QY4jmAJS
2. n = 60 栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取 繰り返し数 =2
x <- c( 49,50,55,47,61,43,52,45,53,55,49,43,49,54,66,48,46,56,52,49,54,59,47,65,52,56,57,55,57,46 ,
47,60,55,46,55,64,48,54,64,77,48,47,44,59,52,63,55,61,64,54,38,45,73,45,58,56,60,56,50,54)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 53.7
> var(x)
[1] 55.80678
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 2.0436, 第1自由度 = 1, 第2自由度 = 58, P値 = 0.1582
有意。繰り返しによる差異がある。

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 4.2465, 自由度 = 1, P値 = 0.03933
有意。分散が異なるので先の分散分析は無効。

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 2.0436, 第1自由度 = 1.000, 第2自由度 = 50.949, P値 = 0.1589
有意。繰り返しによる差異がある。

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
35 1 1.666667 1.666667
40 3 5.000000 6.666667
45 17 28.333333 35.000000
50 12 20.000000 55.000000
55 15 25.000000 80.000000
60 8 13.333333 93.333333
65 2 3.333333 96.666667
70 1 1.666667 98.333333
75 1 1.666667 100.000000
>
157名無しに影響はない(栃木県):2012/08/03(金) 21:43:32.54 ID:QY4jmAJS
BGと試料の比較

1. n = 90 BG 繰り返し数 =3
gr1 <- c( 40,38,27,37,36,32,40,35,29,44,35,36,40,39,37,39,33,31,35,39,31,36,38,48,32,48,35,42,45,28 ,
38,35,36,46,41,29,33,35,34,29,31,47,39,46,37,51,38,34,44,45,54,45,37,51,38,25,26,34,29,45 ,
36,29,27,34,27,35,30,34,28,36,25,35,23,31,30,28,37,31,35,29,24,32,30,41,34,34,29,30,22,27)

2. n = 60 栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取 繰り返し数 =2
gr2 <- c( 49,50,55,47,61,43,52,45,53,55,49,43,49,54,66,48,46,56,52,49,54,59,47,65,52,56,57,55,57,46 ,
47,60,55,46,55,64,48,54,64,77,48,47,44,59,52,63,55,61,64,54,38,45,73,45,58,56,60,56,50,54)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -15.622, 自由度 = 148, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -20.68997 -16.04336
標本推定値:
平均値x 平均値y
35.33333 53.70000
有意。試料とバックグラウンドに差異がある。

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -15.3137, 自由度 = 117.792, P値 < 2.2e-16
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -20.74178 -15.99155
標本推定値:
平均値x 平均値y
35.33333 53.70000
有意。試料とバックグラウンドに差異がある。

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8198, 第1自由度 = 89, 第2自由度 = 59, P値 = 0.3927
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5070552 1.2960152
標本推定値:
分散比
0.8198432
有意。分散が異なるので(Welchの方法)を使用する。

>
158名無しに影響はない(栃木県):2012/08/03(金) 21:48:28.68 ID:QY4jmAJS
3.補足コメント
栃木県産ハリキリ 17.5wg 5.6dg 2012.07.12採取
柏餅用の葉として使用する。防腐剤が含まれているので、夏の保存食に使われる。
53.70000 - 35.33333 = 18.36667CPM (8.63Bq)
.63 * 1000 / 17.5 = 493 Bq/kg
8.63 * 1000 / 5.6 = 1540 Bq/kg
159名無しに影響はない(栃木県):2012/08/15(水) 11:35:56.78 ID:iRbwsHGb
近所の農家から、タバコの廃棄葉を入手しようとしたら、
契約によりできません
と断られてしまった。
タバコは、重金属を集める性質がある(Pb, Cdの灰中濃度が高い)ので
ウラン系列の濃度を知る指標に使用かと思ったが、うまくいかなかった。
Pb-Bi等ウラン系列の核種を蓄積する性質のある植物を知っていたら知らせて欲しい。

現在は、農産加工品、つまり、塩漬けによる線量低下を測定しようとしているが
はっきり言って下がってくれない。
乾重量あたり1000-6000Bq/kgが300-1000位(1/3-1/10)に落ちるだけで、
湿重量40Bq/kg (地震前の輸入汚染食品を国産品で薄めた後の国内平均濃度)までは下がらない。
線量測定まで手が回らない状態。
結構高線量なので、手が荒れやすい。食品を扱うときには手袋が必須。
素手で船頭やって、乳酸を絞った後、手を洗って拭いて、インスに手を触れたらば
カウントが倍に上がった(30-40→60-70)。
漬物をいじっている間に測定ができれば良いが、
漬物をいじっているときには漬物による汚染対策でインスを使ってしまい測定できない状態。

漏れ一人が測定するのではなく、他の人による調査をキボンヌ。
160名無しに影響はない(やわらか銀行):2012/08/15(水) 19:35:48.45 ID:HwT/cqut
タバコの「エコー」「わかば」「しんせい」「ゴールデンバット」は200円です。
海外製タバコ葉を前に測ったところ、汚染の疑いがありました。タバコにはもともとポロニウムが含まれています。
161名無しに影響はない(栃木県):2012/09/02(日) 21:14:53.11 ID:lBcfv1aS
ニンジン ゆで(食塩2%水) 2012.08.13収穫 116Bq/wkg 971Bq/dkg → 26.6Bq/wkg 256Bq/dkg

キャベツ 塩漬け 2012.07.20収穫 193Bq/wkg 1980Bq/dkg → (不明) 868Bq/dkg
 塩漬け 2012.08.03 → (不明) 593Bq/dkg
 塩漬け 2012.08.13 → (不明) 51Bq/dkg
これは、キャベツを千切りにして、流水で1時間さらし、塩漬け(10-20%食塩)した。
その後、約1週間放置して、圧搾し漬け汁を絞り廃棄。流水で24時間さらして、塩漬け(10-20%食塩)、これを繰り返し、水でさらした試料を乾燥し測定したもの。
単に水でさらしてもあまり減らない。圧搾して、高濃度の漬け汁をどれだけ除去するか、が、線量低下に関係する。
単に、水でさらして塩抜きしても線量が下がらない。下がり方のばらつきは、圧搾時に残った水量が原因と考えている。
162名無しに影響はない(栃木県):2012/10/09(火) 19:19:39.58 ID:lo2++vdG
BGが暴れて、測定にならない日々が続いています。
8月の0.2-0.35uSv/h、9月の0.15-0.20uSv/h程度の新規供給に加えて
粉塵の蓄積があちらこちらに見られます。
気がついた点を少々。
測定場所、栃木県南部のどこか。一説によると、栃木・小山・真岡地区。
測定日時、2012.10.06-08
測定器、インスペクター+。30秒読み捨てて、その後の30秒間の最大値と最小値。

特記無しは、おおむね、測定点上空30-50cm。
洗濯機横。部屋の隅。0.17-0.19uSv/h。
土間入り口。0.15-0.19
土間のトタン屋根。0.13-0.15
同雨どい。 0.15-0.19(上空15cm前後)
土間入り口。0.08-0.10
土間上がり口(床直置き、上方向)。0.18-0.20
土間上がり口(横方向)。0.08-0.10
土間室内(水平方向)。0.08-0.10
屋根裏排気口。0.13-0.15

どうも、天井裏に溜まった粉塵が、夜間の気温低下で室内に流入し、
測定時の途中から線量が上昇し、BGが安定しない原因となっているようです。
泥埃が原因かと土間の測定を行ってみたのですが、全体的には低く、掃除が困難な場所が高線量になっている模様です。
163名無しに影響はない(栃木県):2012/10/09(火) 19:29:47.75 ID:lo2++vdG
BGが安定していないので、ちょっと信頼性が低いのですが
関西産食塩の線量が上昇している可能性があります。
8月以前は、BGに比べて有意差がある状態で、食塩の線量が低くなりました。
しかし、9月に購入した食塩は、瀬戸内産・長崎産を問わず、BGとの有意差が取れませんでした。
7月に関西地区で降下線量の上昇がみられました。降下した粉塵が海に落下し、関西地区の海洋汚染が進んでいる可能性があります。

つまり、瀬戸内産食塩を原料としているやさしおを標準物質として校正している場合に、
やさしおに含まれている瀬戸内産食塩の線量が上昇していると、負の誤差になります。
校正用線源の取り扱いに注意してください。
164名無しに影響はない(栃木県):2012/10/10(水) 19:52:26.78 ID:1N12Mmc7
>>162
土間入り口(屋外)。0.15-0.19
土間入り口(屋内)。0.08-0.10
165名無しに影響はない(栃木県):2012/10/30(火) 21:12:34.08 ID:8IdT5hak
雨に濡れた衣類の測定結果。
1. n=30 糊台
x <- c( 38,29,38,50,58,42,48,44,29,44,32,45,38,44,21,36,40,44,38,42,32,34,28,52,26,34,41,33,40,43)

2. n=30 2012.10.23 雨の中付近を徘徊した上着(未乾燥)
x <- c( 44,52,37,39,39,51,47,45,36,34,33,48,45,31,34,38,41,45,50,36,45,38,39,37,34,31,30,36,44,39)

3. n=30 糊台
x <- c( 34,48,43,41,40,51,40,38,24,44,45,50,55,31,46,35,46,30,34,32,41,39,43,49,45,26,36,34,38,34)

4. n=30 2012.10.23 雨の中付近を徘徊した上着(未乾燥)
x <- c( 49,41,44,39,44,61,44,54,45,42,51,46,43,43,34,35,33,42,36,40,40,47,34,55,44,33,33,49,56,38)

5. n=30 糊台
x <- c( 39,33,34,51,49,27,35,34,44,27,35,41,54,39,37,43,53,30,36,29,38,46,40,47,37,37,36,44,41,37)

6. n=30 2012.10.23 雨の中付近を徘徊した下着(未乾燥)
x <- c( 35,36,44,43,37,43,42,51,41,44,37,36,48,40,40,41,43,37,46,33,38,42,32,40,49,46,41,31,44,40)

7. n=30 糊台
x <- c( 47,42,42,39,40,45,29,48,31,42,42,37,43,31,33,38,36,34,44,29,37,39,40,31,27,40,39,44,36,37)

8. n=45 2012.10.23 雨の中付近を徘徊した下着(未乾燥)
x <- c( 42,49,40,41,48,47,45,44,44,48,40,51,43,57,52,39,43,41,46,41,43,30,46,47,34,50,52,39,56,40,63,47,42,58,55,35,49,38,50,55,51,37,34,49,33)

9. n=30 糊台
x <- c( 33,42,46,33,37,36,43,35,36,49,38,32,40,44,38,39,37,52,32,43,36,28,37,34,56,32,38,30,31,30)

BG
> mean(x) [1] 38.71333
> var(x) [1] 48.80989
雨の中付近を徘徊した上着(未乾燥)
> mean(x) [1] 41.55
> var(x) [1] 47.98051
雨の中付近を徘徊した下着(未乾燥)
> mean(x) [1] 43.38667
> var(x) [1] 45.53766

単位 CPM インスペクターですので、334で除すると uSv/h になります。
栃木県南部、一説によると、佐野・小山・真岡地区。
2012.10.23 日に小雨の中を徘徊して帰った服(ほぼ乾いていた)をポリ袋に入れて保存。測定。
上着は水が抜ける性質のある布地(濡れたまま吊るしておくと、いくら手で絞っても水滴が下に落下する)
下着は水を保つ性質のある布地。どちらも綿100%。中国製。
166名無しに影響はない(家):2012/11/09(金) 11:06:07.91 ID:v+MX7Ffr
中曽根が自分の『天地有情』の中にも『回顧録』の中にも書いてます、俺はCIAのテストを受けた、
英語もあった、論文も書いた、パスした、自分から進んでCIAのテストを受けたちゅーことですね。
それで彼はアメリカに派遣されます、で中曽根は自分で自慢げに書いてますけど、
色んな原子力発電所の法律は俺がみんな作ったってね、野党改進党です、自民党、自由党時代で、
その野党の若造が作れるはずがない、そこの背後にCIAがみんな絡んでます。
そうして日本に原子力発電所ができるんです、東電とか関西電力に作れています。
だけどまったくやってないことなのにやれというわけですから、無理があったわけですね。
無理がありました、だから今日、福島が事故があるのはそこなんですよ。

でブラックボックスといって触ってはいけない、中を見せないような状態なのに原発が日本に来ます。
だから今の福島のある原発はGEが開発して間もなくて危険極まりないのに、
彼らは無条件に入れて信じきったわけです、だから無条件に入れてそしてその数年後に、
欠陥商品であるということがわかるわけです、設計者が言うわけですよ、あれは間違ってたって。
だけどアメリカは、その「マーク1」ていうんですけど最初のやつが、まだいっぱいあります。
その設計をし直したり、色んな部品をつけ直したりして、ずうっとやってきてるわけですよ。
日本はまったくやらないまま四十年間、欠陥商品をそのまま使い続けてきたわけです。
日本は四十年間経ってるのに、「危ない」とGEも原発を作ったジェネラルエレクトリックも、
報告書を東電に差し上げたのに日本は改善一つしない。
http://www.youtube.com/watch?v=TuVjmXdufS4

でみんなが安全だと思わせるために凄い金を使ったわけですよ。
その金が全部電気代になってる、ということをみなさんは知らないといけないんです。
日本の電気料金は世界の電気料金の三倍なんです、三倍ですよ、でまだこれから上がります。
彼らはみんな太ったわけです、だから自民党の政治家も民主党の政治家も、
ほとんど反対しないじゃないですか、今でさえ反対の声上げないじゃないですか。
ここまで福島の人が苦しんでいるのに何をやってるんだと。
http://www.youtube.com/watch?v=3glGABd52fk
167名無しに影響はない(栃木県):2012/11/10(土) 10:29:55.69 ID:it1ocQqW
「2012.10.05 使用靴下(足が腫れた)」の分析

1. n=60 糊台
x <- c( 40,39,28,38,43,40,31,45,36,31,31,26,36,38,29,32,44,31,37,35,33,37,47,34,47,20,36,42,43,48,39,47,32,38,37,44,47,43,30,29,42,27,39,38,47,39,46,33,37,39,44,51,41,27,36,42,29,43,46,45)

2. n=30 2012.10.05 使用靴下(足が腫れた)
x <- c( 45,38,38,33,43,36,39,43,35,47,33,40,43,43,40,43,42,46,42,35,39,46,38,44,36,56,48,39,38,36)

3. n=30 糊台
x <- c( 24,30,31,31,37,31,29,27,47,40,36,32,29,40,39,33,35,46,35,46,33,37,52,36,40,40,38,35,42,35)

4. n=30 2012.10.05 使用靴下(足が腫れた)
x <- c( 45,39,45,36,42,37,57,47,21,38,38,38,37,34,39,39,64,47,34,44,39,37,44,39,50,43,25,47,39,36)

5. n=30 糊台
x <- c( 34,39,38,33,40,46,42,27,33,35,39,35,43,43,45,34,29,44,42,41,35,33,27,31,37,36,33,37,41,46)

床に蓄積しているようなので、床の処理を優先してやっています。
168名無しに影響はない(栃木県):2012/11/10(土) 10:31:06.20 ID:it1ocQqW
BGと試料の比較

1. n = 120 BG 繰り返し数 =3
gr1 <- c( 40,39,28,38,43,40,31,45,36,31,31,26,36,38,29,32,44,31,37,35,33,37,47,34,47,20,36,42,43,48,
39,47,32,38,37,44,47,43,30,29,42,27,39,38,47,39,46,33,37,39,44,51,41,27,36,42,29,43,46,45 ,
24,30,31,31,37,31,29,27,47,40,36,32,29,40,39,33,35,46,35,46,33,37,52,36,40,40,38,35,42,35 ,
34,39,38,33,40,46,42,27,33,35,39,35,43,43,45,34,29,44,42,41,35,33,27,31,37,36,33,37,41,46)

2. n = 60 2012.10.05 使用靴下(足が腫れた) 繰り返し数 =2
gr2 <- c( 45,38,38,33,43,36,39,43,35,47,33,40,43,43,40,43,42,46,42,35,39,46,38,44,36,56,48,39,38,36 ,
45,39,45,36,42,37,57,47,21,38,38,38,37,34,39,39,64,47,34,44,39,37,44,39,50,43,25,47,39,36)
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -3.3565, 自由度 = 178, P値 = 0.0009652
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -5.425442 -1.407891
標本推定値:
平均値x 平均値y
37.31667 40.73333

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -3.2851, 自由度 = 111.598, P値 = 0.001363
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -5.477495 -1.355838
標本推定値:
平均値x 平均値y
37.31667 40.73333

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 0.8795, 第1自由度 = 119, 第2自由度 = 59, P値 = 0.5499
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.5542763 1.3492261
標本推定値:
分散比
0.8794716

>
169名無しに影響はない(栃木県):2012/11/10(土) 10:46:18.31 ID:it1ocQqW
床に1−2時間寝ると、喉が痛くなる。ところが、椅子で寝るとおこらない。
気道程度、濡れ壁式集塵機で、線量が落ちるのではないか、ということではじめたのが以下の測定。
生データは余りにも大量すぎるので、掲載不可。大体半日ぐらいの連続測定(記録ソフトが15時間程度で異常停止するため)。

作成した集塵機は、
発泡スチロール製箱(25*15*10程度)で、15cm側を上側約5cmを切断。残る3面にタオルをぶら下げ、蓋をした。
蓋に、直径10cm程度の穴をあけ、卓上扇風機を下から上に風が動くように置く。
これを床面におき、通常の試料測定用机の線量変化を測定した。

扇風機動作前
> mean(x)
[1] 39.34407
> var(x)
[1] 44.45018
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 6 1.0169492 1.016949
25 23 3.8983051 4.915254
30 103 17.4576271 22.372881
35 202 34.2372881 56.610169
40 130 22.0338983 78.644068
45 83 14.0677966 92.711864
50 31 5.2542373 97.966102
55 9 1.5254237 99.491525
60 2 0.3389831 99.830508
65 0 0.0000000 99.830508
70 1 0.1694915 100.000000

扇風機動作後。
> mean(x)
[1] 36.46329
> var(x)
[1] 36.78771
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 27 2.27848101 2.278481
25 114 9.62025316 11.898734
30 317 26.75105485 38.649789
35 372 31.39240506 70.042194
40 248 20.92827004 90.970464
45 83 7.00421941 97.974684
50 18 1.51898734 99.493671
55 5 0.42194093 99.915612
60 1 0.08438819 100.000000
170名無しに影響はない(栃木県):2012/11/10(土) 10:47:58.80 ID:it1ocQqW
> mean(x)
[1] 36.352
> var(x)
[1] 35.81995
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
15 1 0.08 0.08
20 24 1.92 2.00
25 137 10.96 12.96
30 315 25.20 38.16
35 391 31.28 69.44
40 264 21.12 90.56
45 98 7.84 98.40
50 18 1.44 99.84
55 2 0.16 100.00

> mean(x)
[1] 37.09242
> var(x)
[1] 40.52478
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 11 2.0332717 2.033272
25 47 8.6876155 10.720887
30 140 25.8780037 36.598891
35 147 27.1719039 63.770795
40 132 24.3992606 88.170055
45 50 9.2421442 97.412200
50 10 1.8484288 99.260628
55 4 0.7393715 100.000000

> mean(x)
[1] 36.63696
> var(x)
[1] 35.487
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 13 1.430143 1.430143
25 87 9.570957 11.001100
30 223 24.532453 35.533553
35 303 33.333333 68.866887
40 201 22.112211 90.979098
45 64 7.040704 98.019802
50 17 1.870187 99.889989
55 0 0.000000 99.889989
60 1 0.110011 100.000000
> mean(x)
[1] 37.05952
> var(x)
[1] 39.63607
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 6 1.4285714 1.428571
25 40 9.5238095 10.952381
30 107 25.4761905 36.428571
35 122 29.0476190 65.476190
40 89 21.1904762 86.666667
45 43 10.2380952 96.904762
50 12 2.8571429 99.761905
55 1 0.2380952 100.000000
171名無しに影響はない(栃木県):2012/11/10(土) 10:53:33.80 ID:it1ocQqW
床に寝たときに、多少喉が楽になったが、放射能の影響か、湿度が上がったためか、は不明。
湿度計の目盛りは、5%(1目盛り)しか動かないので、測定誤差の範囲内。
大体1日で、300-500ccの水が蒸発する。
しばらく使用して、中に入れたタオルの線量を測定すればはっきりするかもしれない。
発泡スチロールの上からの測定では、BGと共に同じ uSv/h値の範囲(30秒読み捨て、その後1分間の最大値と最小値を比較)。
172名無しに影響はない(栃木県):2012/12/26(水) 20:47:55.32 ID:T3SURqJr
分量が多いので、一部省略します
1. n=88 糊台
x <- c( 31,45,45,35,48,29,36,39,47,35,36,32,39,45,45,27,34,32,35,37,33,30,43,37,39,36,35,41,35,38,40,50,37,34,40,30,40,40,46,43,36,35,32,
43,32,32,45,35,37,33,59,38,33,45,36,42,34,38,26,41,18,42,34,35,38,37,32,33,36,27,25,38,45,41,35,40,38,29,38,41,28,45,38,24,36,40,48,60)

2. n=30 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル
x <- c( 39,33,44,34,38,41,37,38,34,29,42,37,49,46,37,36,32,48,45,40,51,29,36,34,33,44,43,34,42,41)

3. n=45 糊台
x <- c( 30,37,34,32,53,37,38,34,35,32,55,34,34,34,39,39,34,27,47,30,31,41,35,37,42,46,35,40,34,40,46,27,40,39,28,40,41,36,49,37,35,41,40,28,34)

4. n=30 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル
x <- c( 25,39,43,51,41,45,34,39,35,35,41,33,54,48,39,46,29,51,33,37,44,39,30,42,43,30,36,36,30,48)

5. n=30 糊台
x <- c( 39,40,31,38,40,37,42,37,46,46,38,33,29,41,33,31,37,41,32,35,41,52,34,36,40,32,30,32,46,36)

6. n=30 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル
x <- c( 29,39,30,34,43,42,35,32,47,36,49,40,35,34,43,45,41,36,35,36,39,30,42,35,39,37,34,38,33,35)

7. n=30 糊台
x <- c( 45,31,39,39,22,47,40,28,43,25,32,33,40,29,49,35,47,28,43,32,33,38,34,29,38,31,37,25,46,31)

8. n=30 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル
x <- c( 37,41,41,43,38,40,41,35,48,50,39,44,48,38,46,34,38,44,48,43,40,41,36,30,35,45,34,38,36,32)

9. n=30 糊台
x <- c( 47,46,38,37,37,38,43,29,40,34,29,25,40,40,40,31,37,44,33,37,49,34,44,40,41,41,48,33,25,32)
173名無しに影響はない(栃木県):2012/12/26(水) 20:49:12.81 ID:T3SURqJr
全体の分析
> mean(x)
[1] 37.793
> var(x)
[1] 40.14709
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.3354, 第1自由度 = 8, 第2自由度 = 334, P値 = 0.2248

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 10.1848, 自由度 = 8, P値 = 0.2523

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.4059, 第1自由度 = 8.000, 第2自由度 = 119.984, P値 = 0.2008

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
15 1 0.2915452 0.2915452
20 2 0.5830904 0.8746356
25 27 7.8717201 8.7463557
30 77 22.4489796 31.1953353
35 106 30.9037901 62.0991254
40 75 21.8658892 83.9650146
45 44 12.8279883 96.7930029
50 8 2.3323615 99.1253644
55 2 0.5830904 99.7084548
60 1 0.2915452 100.0000000
>
BGと試料の比較
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 5.7115, 第1自由度 = 1, 第2自由度 = 341, P値 = 0.01740

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 1.8656, 自由度 = 1, P値 = 0.1720

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 6.1058, 第1自由度 = 1.000, 第2自由度 = 267.874, P値 = 0.01410

>
174名無しに影響はない(栃木県):2012/12/26(水) 20:50:49.35 ID:T3SURqJr
繰り返しによる影響

1. n = 223 BG 繰り返し数 =5
> mean(x)
[1] 37.19731
> var(x)
[1] 42.5645
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 0.5177, 第1自由度 = 4, 第2自由度 = 218, P値 = 0.7228

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 2.7326, 自由度 = 4, P値 = 0.6035

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 0.4303, 第1自由度 = 4.000, 第2自由度 = 84.391, P値 = 0.7864

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
15 1 0.4484305 0.4484305
20 2 0.8968610 1.3452915
25 22 9.8654709 11.2107623
30 53 23.7668161 34.9775785
35 66 29.5964126 64.5739910
40 45 20.1793722 84.7533632
45 28 12.5560538 97.3094170
50 3 1.3452915 98.6547085
55 2 0.8968610 99.5515695
60 1 0.4484305 100.0000000
>
175名無しに影響はない(栃木県):2012/12/26(水) 20:51:38.81 ID:T3SURqJr
2. n = 120 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル 繰り返し数 =4
> mean(x)
[1] 38.9
> var(x)
[1] 34.07395
> oneway.test(x ~ g, var = T)
一元配置分散分析

データ: x と g
F = 1.0829, 第1自由度 = 3, 第2自由度 = 116, P値 = 0.3592

> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)

データ: x と g
バートレットのK二乗値 = 5.4507, 自由度 = 3, P値 = 0.1416

> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)

データ: x と g
F = 1.4109, 第1自由度 = 3.00, 第2自由度 = 63.95, P値 = 0.2477

> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 5 4.166667 4.166667
30 24 20.000000 24.166667
35 40 33.333333 57.500000
40 30 25.000000 82.500000
45 16 13.333333 95.833333
50 5 4.166667 100.000000
>
176名無しに影響はない(栃木県):2012/12/26(水) 20:53:03.01 ID:T3SURqJr
BGと試料の比較

1. n = 223 BG 繰り返し数 =5
2. n = 120 2012.11.11-2012.12.12の間使用した集塵機のフィルターに使ったタオル 繰り返し数 =4
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)

データ: gr1 と gr2
t値 = -2.3899, 自由度 = 341, P値 = 0.01740
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.1040585 -0.3013226
標本推定値:
平均値x 平均値y
37.19731 38.90000

> t.test(gr1, gr2)
二標本t検定(Welchの方法)

データ: gr1 と gr2
t値 = -2.471, 自由度 = 267.874, P値 = 0.01410
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -3.0593787 -0.3460025
標本推定値:
平均値x 平均値y
37.19731 38.90000

> var.test(gr1, gr2)
二群の等分散性の検定

データ: gr1 と gr2
F = 1.2492, 第1自由度 = 222, 第2自由度 = 119, P値 = 0.1771
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 0.9036585 1.7006307
標本推定値:
分散比
1.24918

>
177名無しに影響はない(栃木県):2012/12/26(水) 20:56:38.52 ID:T3SURqJr
これみればわかるとおり、少し線量が増えたのがタオル。
多少粉塵が減るみたい、という結果。
BGの度数分布の形を見ればわかるとおり、
高原状態から脱して、わずかに違う複数の線量差がある大気が、入れ替わりながら移動するという現象は、抑えられた気分。
178名無しに影響はない(埼玉県):2013/02/05(火) 23:09:40.08 ID:19MLNuvZ
インスペクターたすの相場はいくらくらい?
179名無しに影響はない(栃木県):2013/02/07(木) 20:36:46.26 ID:cEt+X41Z
糊台の最近の数値。
暖房入れて換気が悪くなったせいか、bgが暴れて安定していない。
それで、測定ができないでいる。
bgの乱れを参考程度に。
37,34,39,41,38,32,39,39,34,41,46,47,30,38,38,44,46,38,37,30,37,49,48,38,44,48,47,32,41,32,29,39,41,30,39,36,
26,32,33,43,31,34,40,45,31,38,36,44,47,43,47,36,39,39,31,40,35,38,41,28,36,39,32,47,35,36,38,37,25,31,48,34,
39,35,31,40,36,36,37,30,43,34,41,38,32,37,44,40,46,28,31,36,38,34,48,46,39,40,32,43,37,34,40,39,41,31,45,37,
34,44,38,37,34,51,37,33,47,44,38,30,34,38,31,30,40,42,39,26,36,41,41,39,45,37,38,42,30,38,32,57,35,26,35,26,
38,32,37,36,44,41,40,37,33,34,46,44,37,38,31,41,40,42,49,29,30,31,25,37,47,40,40,22,33,38,32,32,43,47,62,26,
42,35,38,40,33,35,37,49,47,43,39,41,36,32,40,40,38,32,36,40,34,44,34,25,34,48,51,29,33,32,39,28,38,46,43,36,
41,38,33,30,37,38,34,35,39,49,35,32,40,42,35,31,40,44,34,32,48,45,35,36,47,33,47,44,35,43,30,44,41,44,33,37,
33,29,30,30,39,31,47,41,40,42,36,36,42,25,31,38,39,35,41,38,34,25,41,43,36,40,30,46,33,42,24,33,33,37,39,37,
39,36,28,28,36,30,45,50,24,23,46,40,23,33,38,36,29,26,42,49,44,23,35,32,31,38,40,30,44,41,42,51,32,33,43,31,
29,25,50,35,33,39,41,39,34,38,40,29,43,35,29,40,29,38,48,51,35,24,39,34,40,26,41,35,34,33,49,42,38,39,40,39,
35,34,43,33,34,40,38,37,28,46,32,39,32,27,44,42,27,42,34,41,31,39,36,32,44,36,30,34,36,38,44,35,45,41,45,32,
36,41,46,38,31,52,27,35,45,53,34,34,37,37,35,29,52,38,34,40,44,43,34,45,37,53,38,33,49,36,20,29,36,28,37,46,
32,39,38,44,34,42,32,35,40,44,37,35,37,50,28,38,33,31,28,32,46,29,33,35,50,39,37,33,28,45,48,30,34,30,34,31,
32,38,38,32,42,44,39,37,36,32,41,33,31,47,33,25,37,37,38,35,24,36,28,41,43,36,37,33,41,35,52,40,34,35,38,35,
53,40,47,37,42,31,48,42,33,30,37,36,32,43,34,38,34,28,26,32,44,38,44,39,37,48,38,34,45,35,27,37,40,30,36,41,
41,29,26,32,41,37,30,37,31,38,45,34,31,36,39,25,40,40,38,37,32,50,35,30,42,42,44,38,42,25,40,39,43,34,30,36,
41,33,42,46,41,35,34,33,32,27,30,36,49,29,38,22,40,36,44,38,28,37,33,33,32,35,33,35,35,46,30,27,37,47,36,37,
40,39,47,40,41,35,27,31,43,47,30,38,42,32,40,32,32,34,44,46,40,41,43,43,43,30,35,39,43,46,31,31,39,46,42,43,
42,47,42,43,35,29,25,32,45,39,47,39,34,37,38,37,31,44,42,37,39,45,39,37,41,38,37,42,38,33,38,46,28,34,43,33,
40,38,40,35,31,36,29,30,34,46,42,38,36,27,37,38,47,44,43,26,29,39,32,36,38,34,42,35,43,25,41,32,34,29,33,38,
34,39,42,35,46,44,35,30,37,37,34,32,31,29,46,29,36,30,28,27,29,55,27,39,41,39,49,33,46,37,36,34,37,45,30,34,
40,31,32,31,38,22,34,38,50,43,27,45,37,43,39,43,31,39,32,32,40,32,31,38,36,40,41,39,39,44,36,41,45,56,45,31,
39,38,44,27,45,50,33,48,43,41,44,26,40,38,34,43,48,39,39,36,48,36,27,24,32,36,37,34,38,40,41,40,38,41,33,28,
49,33,42,38,50,35,37,27,39,32,36,46,30,41,52,44,49,45,33,30,27,30,39,37,41,45,34,34,36,34,30,38,37,36,40,49,
40,36,36,34,39,39,48,43,37,30,37,54,41,35,52,49,30,35,31,40,35,41,35,35,36,33,45,39,33,47,31,40,38,28,41,36,
33,41,33,37,45,39,43,35,36,41,38,31,45,32,36,29,45,30,47,35,48,34,34,34,38,42,39,28,30,29,41,37,33,44,47,34,
37,35,36,36,39,38,30,35,43,42,32,41,25,46,44,28,38,37,36,43,40,37,47,40,37,40,30,43,42,33,30,40,39,32,37,41,
29,28,31,36,43,28,34,35,40,37,36,40,41,29,53,39,42,37,35,27,33,43,39,46,35,39,37,35,36,33,46,45,42,30,40,46,
38,35,35,30,38,37,36,39,43,39,51,27,40,35,30,44,31,43,31,27,33,37,39,43,36,44,34,43,38,39,31,33,36,30,30,36,
35,38,34,30,48,39,43,39,38,27,37,40,37,40,47,39,35,33,38,43,40,33,36,26,39,42,43,44,47,37,41,37,40,36,37,37,
32,37,45,39,41,39,35,39,37,48,32,29,47,32,30,31,32,40,37,42,40,34,37,32,29,38,40,44,43,40,41,45,42,39,41,27,
40,45,36,41,41,52,41,41,44,45,45,49,31,36,33,40,41,32,44,38,47,43,38,34,33,42,39,36,36,46,51,43,50,35,45,37,
41,38,32,37,38,37,28,36,34,40,27,50,43,37,46,25,25,50,40,34,43,38,41,43,48,34,35,50,35,38,27,43,46,40,31,32,
37,36,41,43,44,36,30,39,33,31,31,42,48,37,45,39,32
180名無しに影響はない(栃木県):2013/02/07(木) 20:39:41.33 ID:cEt+X41Z
>>178
インスペクタースレで聞いてくれ。
http://uni.2ch.net/test/read.cgi/radiation/1331598144/l50
こっちなら、並行輸入店・日本正規代理店と取引のある人がいるから。
181名無しに影響はない(やわらか銀行):2013/02/15(金) 03:28:38.93 ID:PrB5lg54
>163
栃木さんまだ測ってたんですねw
関西や瀬戸内海の食塩が汚染しているとのことですが、海は繋がっているんだから時間がたつにつれて、汚染するのは当然だと思います。
シュミレーションでは原発事故から300日後には日本周辺の太平洋側の海がすべて汚染。500日後には日本海側もすべて汚染。1000日後にはアメリカ西海岸全域の海が汚染。
まだ福島原発からは放射性物質が毎日でていますから今後さらにひどくなるでしょう。

参考
http://blog.goo.ne.jp/flyhigh_2012/e/99f9d328ef7dda22c196ee043404caed
182名無しに影響はない(鹿児島県):2013/07/21(日) NY:AN:NY.AN ID:UoCFcdWn
自分の生命健康,未来を守りたいのなら選挙に行こう!


高濃度放射性物質拡散反対!

原発再稼動反対!

基本的人権まで無くそうと憲法改正を強行しようとしている売国奴政権は要らない!

徴兵制度及び国防軍化反対!

福島第一原発事故以来今も尚,毎時1000万ベクレル以上の
高濃度放射性物質を事故以来拡散し続けており,
事故の収束すら全くお手上げ状態にもかかわらず
原発再稼動を強行する諸悪の根源の売国奴政権の存続断固反対!

自民・公明・維新の会・みんなの党・民主は
日本国国民及び日本国自体を壊滅させる!
183名無しに影響はない(滋賀県):2014/02/17(月) 13:41:37.48 ID:y7oMWMbj
ほう
184名無しに影響はない(catv?):2014/02/17(月) 17:39:20.24 ID:6y3AAxxS
とちぎーーーーーーwww数字の羅列がちこみしろーーwwwwww
グンマーと抗争中で忙しいんか?wwww
185名無しに影響はない(栃木県):2014/06/21(土) 12:14:16.66 ID:myCzX7Wo
意味もなく age
186名無しに影響はない(長屋):2014/06/22(日) 06:55:42.58 ID:MS2Cm1RS
(栃木県)が、見放されて淋しいのか久しぶりに降臨www
187名無しに影響はない(やわらか銀行):2014/07/02(水) 15:12:38.14 ID:cnHSybXF
がんばれ!(栃木県)!
188名無しに影響はない(家)
都議 樺山卓司(自殺扱いで変死)

6/30までブログで放射線量測定結果を発表