不等式への招待 第3章

このエントリーをはてなブックマークに追加
408132人目の素数さん
他スレから1題・・・

〔問題396〕実数 a,b,c が条件
 (a-b)^3 + (b-c)^3 + (c-a)^3 = 60,
を満たすとき、
 S = |a-b| + |b-c| + |c-a| の最大値と最小値を求めよ。

http://science6.2ch.net/test/read.cgi/math/1212563635/396 ,442
409132人目の素数さん:2008/07/30(水) 23:07:48
>>408

(略解)
 b-a=x, c-b=y, a-c=z とおく。x+y+z =0,
∴ ≧0 のものと ≦0 のものがある。
題意より (a-b)^3 + (b-c)^3 + (c-a)^3 = 3(a-b)(b-c)(c-a) = -3xyz > 0,
{x,y,z} の2つは正、1つが負である。
x,y>0>z としてもよい。(x,y)-平面の第一象限で考える。
 (a-b)^3 + (b-c)^3 + (c-a)^3 = -3xyz = 3xy(x+y),

(最小値)
軸を45゚回して
 S/(√8) = (x+y)/√2, 
 d = (x-y)/√2,
とおくと、
 3xy(x+y) = (3/√2){(1/8)S^2 - d^2}S,
題意より、
 0 ≦ d^2 = (1/8)S^2 - 80/S = F(S),   (F は単調増加函数)
 S ≧ 4・10^(1/3),
 等号成立は x = y = -z/2 = 10^(1/3), またはその rotation のとき。

(最大値) なし
 x→∞ のとき、0 < y < 20/x^2 →0, S=2(x+y) →∞.