>222
2つの柱面 |x|^p+|y|^p=a^p, |y|^p+|z|^p=a^p とで
囲まれた領域の体積は、
V = (16/3p){Γ(2/p)Γ(1/p)/Γ(3/p)}a^3.
(略証)
S(y) = 4(a^p-|y|^p)^(2/p),
(y/a)^p =Y とおくと、y=a・Y^(1/p), dy = (a/p)・Y^{(1/p)-1}
V = 2∫[0,a] S(y)dy
= (8/p)(a^3)∫[0,1] (1-Y)^(2/p)・Y^{(1/p)-1}dY
= (8/p)B(1+(2/p),1/p)a^3
= (8/p){Γ(1+(2/p))Γ(1/p)/Γ(1+(3/p))}a^3
= (16/3p){Γ(2/p)Γ(1/p)/Γ(3/p)}a^3.
(例)
p=2/3 (asteroid)のとき: V=(128/105)a^3.
p=1 (正方形柱)のとき: V = (8/3)a^3
p=2 (円柱面)のとき: V = (16/3)a^3.