ブラックホールについて3

このエントリーをはてなブックマークに追加
678名無しSUN
>>660

危険論者の中には「余剰次元の効果で素粒子レベルの領域ではずっと重力が強くなってるかもしれないから、
生成したMBHはずっと速く成長するはずだ」って考える人もいるみたいなんで、試しに計算してみた。

前提
・陽子は固いボール状の、質量Mp、半径Rp、電荷qの素粒子であり、Fnの核力で原子核の他の部分と結合している。
・MBHはMbの質量を持ち、速さvの一定速度で地球(平均密度ρ、体積Vの一様な組成の物質)の中を動き回っている
・生成した時のMBHの質量は陽子質量の100万倍で、1.67×10^(-21) (kg)である。
・MBHが陽子に及ぼす重力が陽子同士の核力を超えた時、陽子は原子核から剥がされてMBHに吸い込まれる。

万有引力の法則から、MBHから距離rだけ離れた陽子はG*Mb*Mp/r^2の重力を受けるから、陽子がMBHから受ける重力が
陽子に働く核力Fnと等しくなるとき、Fn=G*Mb*Mp/r^2となる。
よってこの時陽子とMBHの間の距離はRf=√(G*Mb*Mp/Fn)となる。

一方、質量Mの物体がMBH化するとき、そのシュバルツシルト半径は真空中の光速度をcとしてRs=2*G*M/c^2と書けるので、
シュバルツシルト半径はMBHの質量に比例する。
一方、RfはMBHの質量の平方根に比例して増大するので、MBHの質量がある値よりも大きくなるとシュバルツシルト半径が
Rfよりも大きくなる。
この時のMBHの質量はRf=Rsとおくことで求められ、c^4*Mp/(4*G*Fn)となる。−@