1 :
名無しさん@1周年 :
02/09/05 02:18 とりあえず独立成分分析についてのスレです
2 :
名無しさん@1周年 :02/09/05 02:33
ero
あぼーん
5 :
名無しさん@1周年 :02/09/07 22:35
いやだ
あぼーん
7 :
名無しさん@1周年 :02/09/20 00:32
どうよ?
8 :
名無しさん@1周年 :02/09/28 01:01
めちゃくちゃに混ざってても戻せる?
あぼーん
あぼーん
あぼーん
12 :
名無しさん@1周年 :02/09/30 01:59
ひまだな
13 :
名無しさん@1周年 :02/10/01 08:58
14 :
名無しさん@1周年 :02/10/04 03:00
そうかい
15 :
名無しさん@1周年 :02/10/07 18:43
結構古い手法なの?
16 :
名無しさん@1周年 :02/10/12 05:19
近年の研究対象にはあまりないのだろう
あぼーん
18 :
名無しさん@1周年 :02/10/14 23:16
何年位前に話題になったんだ?
19 :
i80286 ◆F.T68629AI :02/10/15 23:09
>>11 >>11 の言っている事は大嘘です,
絶対,実行しないように(;´ー`),
実行したらIPアドレスが思いっきりバレます,
一度,俺も引っかかった(;´д⊂)。
20 :
ipm05.gsc.riken.go.jp :02/10/23 16:22
test
あぼーん
あぼーん
Domain Information: [ドメイン情報]
a. [ドメイン名] RIKEN.GO.JP
e. [そしきめい] りかがくけんきゅうしょ
f. [組織名] 理化学研究所
g. [Organization] RIKEN(The Institute of Physical and
Chemical Reserch)
k. [組織種別] 特殊法人
l. [Organization Type] A non-profit reserch institute
m. [登録担当者] TS002JP
n. [技術連絡担当者] MY788JP
n. [技術連絡担当者] NT414JP
n. [技術連絡担当者] TS002JP
p. [ネームサーバ] ns1.riken.go.jp
p. [ネームサーバ] ns2.riken.go.jp
y. [通知アドレス]
[email protected] [状態] Connected (2003/03/31)
[最終更新] 2002/05/30 16:06:46 (JST)
[email protected]
24 :
名無しさん@1周年 :02/10/31 23:56
数理かがくみたか?
25 :
名無しさん@1周年 :02/11/02 14:26
数理科学は会話のような内容になっていたぞ
26 :
名無しさん@1周年 :02/11/03 13:52
どこに何が書いてあるのか どうせなら英語で書けばいいのにな
27 :
名無しさん@1周年 :02/11/09 01:14
どれくらい使えるのか わからない技術だ
28 :
名無しさん@1周年 :02/11/17 02:28
このごろよく聞くけど、実際に工学的な応用はされているのか?
29 :
名無しさん@1周年 :02/11/18 02:40
本で読んだことはあるだ
30 :
名無しさん@1周年 :02/11/24 23:30
名前に踊らされてるな
あぼーん
32 :
名無しさん@1周年 :02/11/30 22:00
フーリエ変換の一種だろ?
33 :
名無しさん@1周年 :02/12/02 03:43
んで、マイクロフォンアレイとどっちがいいの?
34 :
名無しさん@1周年 :02/12/07 21:42
どっちでもいいだろ
35 :
名無しさん@1周年 :02/12/14 00:32
かなりの確立で分離できるものなの?
36 :
名無しさん@1周年 :02/12/19 04:59
やっぱフィッシャー行列でしょう
あぼーん
あぼーん
39 :
名無しさん@1周年 :02/12/19 17:26
流行りものという言葉についてどう思う?
あぼーん
あぼーん
42 :
名無しさん@1周年 :02/12/20 05:54
リーマン空間なのか?
43 :
名無しさん@1周年 :02/12/21 17:40
数理科学読んだか? このあいだのってたぞ
44 :
名無しさん@1周年 :02/12/30 11:26
これってすごいの? どんなことに使えるのか
(^^)
(^^)
ここはすごい過疎っぷりですね。
(^^)
∧_∧ ( ^^ )< ぬるぽ(^^)
━―━―━―━―━―━―━―━―━[JR山崎駅(^^)]━―━―━―━―━―━―━―━―━―
━―━―━―━―━―━―━―━―━[JR山崎駅(^^)]━―━―━―━―━―━―━―━―━―
52 :
名無しさん@3周年 :03/06/12 02:21
マイクロフォンアレイってたくさん あればあるほどいいのだろうか
54 :
名無しさん@3周年 :03/06/12 07:14
∧_∧ ( ^^ )< ぬるぽ(^^)
fdasg
(⌒V⌒) │ ^ ^ │<これからも僕を応援して下さいね(^^)。 ⊂| |つ (_)(_) 山崎パン
58 :
名無しさん@3周年 :03/08/16 20:03
スレンダーなイケイケ系のギャル。
ブーツにTバック、そしてタトゥーとこの女只者ではない雰囲気があります。
サングラスをかけてフェラの後は目隠しをされ本番シーン。
挿入部のアップではHなオマンコをあらわにして喘ぎまくります。
援交女の淫らな無修正動画をここでゲット!!
http://www.geisyagirl.com/
61 :
名無しさん@3周年 :04/07/23 01:19
>>52 マイクロフォンアレイがたくさんあればマイクロフォンアレイアレイですね
63 :
123 :04/12/23 01:14:51
だれかKL情報量を使っての独立成分分析をしてる人いませんか??
...これからも僕を応援して下さいね(^^)。 ━―━―━―━―━―━―━―━―━[JR山崎駅(^^)]━―━―━―━―━―━―━―━―━― ∧_∧ ピュ.ー ( ^^ ) <これからも僕を応援して下さいね(^^)。 =〔~∪ ̄ ̄〕 = ◎――◎ 山崎渉 __∧_∧_ |( ^^ )| <寝るぽ(^^) |\⌒⌒⌒\ \ |⌒⌒⌒~| 山崎渉 ~ ̄ ̄ ̄ ̄ ∧_∧ ( ^^ )< ぬるぽ(^^) (⌒V⌒) │ ^ ^ │<これからも僕を応援して下さいね(^^)。 ⊂| |つ (_)(_) 山崎パン ∧_∧ ∧_∧ ピュ.ー ( ・3・) ( ^^ ) <これからも僕たちを応援して下さいね(^^)。 =〔~∪ ̄ ̄ ̄∪ ̄ ̄〕 = ◎――――――◎ 山崎渉&ぼるじょあ
とにかく大好きな青いそら!興味のあるほりえもん!あとフォント集めるのが趣味なんですが、ホームページに挑戦して好きなことを巨乳したい〜
とにかく大好きな青いそら!興味のあるほりえもん!あとフォント集めるのが趣味なんですが、ホームページに挑戦して好きなことを巨乳したい〜
71 :
のり :2005/11/30(水) 13:20:09
独立成分分析を使おうとしています。 空間混合モデルは理解できましたが、時間混合モデルがさっぱり理解できません。 だれかおしえてくださいませんか?
72 :
名無しさん@5周年 :2006/01/27(金) 22:32:24
>>71 重みHで時間ずれが生じる。
空間混合 X(t)=HS(t)
x1(t)=1.1s1(t)-0.3s2(t)
x2(t)=1.2s1(t)+2.0s2(t)
時間混合 X(t)=H(t)*S(t):
x1(t)=1.1s1(t)+1.2s1(t-1)-0.3s2(t)+2.1s1(t-1)
x2(t)=1.2s1(t)+2.0s1(t-1)-1.2s2(t)+0.2s2(t-1)
73 :
yuri :2006/02/14(火) 18:39:38
あのね、実は見てもらいたいものがあるんだケド、ゆりのHPができたの〜!!!
う〜んとねぇ、内容はねぇ。。シモネタはっかりになっちゃった。。。orz
でもでも、そーゆうセキララなゆりもみてほしぃーの(≧∀≦)
エッチ系のハナシのネタがどんどん思いつくって、やっぱあたしエロいのかなぁ〜(((((((((((((*ノ▽ノ)イヤーン
写真つけて一人でコウフンしちゃってるし(笑)
ガッコの友だちにはヒミツにしてるけど、みんなには見てほしぃーの!!
http://yurihappy.web.fc2.com/
74 :
名無しさん@5周年 :2006/02/14(火) 20:55:39
75 :
名無しさん@5周年 :2006/06/10(土) 16:13:45
リー群,うめぇー
すみません。質問です。 OBB(Oriented Bounding Box)で、物体頂点群から、 主成分分析をもちい(共分散行列つくって固有ベクトル)、 3つの軸を見つけることができたのですが、 直方体の物体に対する第一成分の軸が、最長の対角線上 になってしまいます。こうなるとAABBより悪い。。。 あとで考えてみると、確かに普通に適用するとそうなるのは わかったのですが、外国の論文みてると、どうやらこれを回避 する方法があるらしいのです。 ただ、英語がよくわからないので、もう一歩が読みきれません。 あとなにかのアイデアひとつと思うですが、 ポイントを教えてください。
78 :
名無しさん@5周年 :2006/07/21(金) 21:46:32
観測されたn次元の確率変数に中心化・白色化を施したベクトルzがあって
これに含まれるひとつの独立成分を推定するとき、目的関数を例えば
F(w) = | kurt(w'z) | (ベクトルw方向へ射影したときの尖度の絶対値。記号 ' は転置)
のように決めて、これをwのノルム||w||^2=1の制約の下に
最適化(最大化)するwを見つければICAの問題が解けるのは分かる。
ただ、最急降下法などの最適化アルゴリズムは簡単に構成できるが
fastICAの採用しているような収束のはやい「不動点アルゴリズム」が
どうして導かれる(またそれがどうして妥当である)のかが分からない。
http://www.cs.helsinki.fi/u/ahyvarin/papers/ICA.shtml ここにある文章を読んでいもやっぱりイマイチ分からない。
たしかに、ラグランジュ関数L(w,λ)=-F(w)+λ(||w||-1)と置いて
制約条件付き最適化の問題を未定乗数法を解けば、
∂L(w,λ)/∂λ = ||w|| -1 = 0
∂L(w,λ)/∂w = -∇F(w) + λw = 0
が出てきて、二番目の式はw = (1/λ) ∇F(w)で、G(w) = (1/λ) ∇F(w) と
置いてみれば、 w = G(w) なので、たしかに解wはGの不動点となっている様子。
関数Gの性質によっては、不動点定理が適用できる類の問題かもしれないが
自分にはそのあたりの知識がほとんどなく、収束の検討もできないので
これを機会に凸解析を勉強してみようと思った次第であります。
---
というわけで、fastICAの不動点法が理解できる文献などご存じないでしょうか?
上のサイトの文献をちゃんと読めば書いてあるというご指摘でも結構です。
(アルゴリズムの説明が足りないと感じるのは、勉強不足が原因かと思いますが。)
> ラグランジュ関数L(w,λ)=-F(w)+λ(||w||-1) > ∂L(w,λ)/∂λ = ||w|| -1 = 0 ||w||^2 - 1 の間違いです。
80 :
名無しさん@5周年 :2006/08/27(日) 21:19:20
コンサバ
81 :
名無しさん@5周年 :2007/05/11(金) 16:21:37
82 :
名無しさん@5周年 :2007/06/16(土) 22:05:51
hos
hosh
85 :
名無しさん@5周年 :2009/09/29(火) 07:11:25
ICA
86 :
名無しさん@5周年 :
2010/08/01(日) 14:32:53 現役でICAの研究している人はいないですか? 私は研究はしているのですが、応用が幅広いため、全然把握できていないです。 詳しい人と話してみたいです。