【応用物理】磁気の波の重ね合わせを利用した、新しい論理演算方式の原理を初めて実証/慶応大

このエントリーをはてなブックマークに追加
1ケンシロウとユリア百式φ ★
慶応義塾大学(慶応大)は5月16日、薄膜化した金属磁性体を用いた磁気の波(スピン)による論理演算方式を考案し、
その原理を初めて実証したと発表した。

成果は、同大 理工学部の関口康爾専任講師と能崎幸雄准教授らによるもの。
詳細は科学雑誌「Applied Physics Express」のオンライン版に掲載された。

高度情報化社会の基盤となっている半導体技術の進化を支えてきたのはプロセスの微細化だが、
すでに先端デバイスでは1Xnm世代へと到達し、その物理的な限界が見えるようなってきた。
そうした中で、新しい動作原理に基づく演算素子として、磁気を用いたデバイスは、
電気信号ではなく磁気信号を活用するため、省電力につながる新動作原理を提案できると有望視されている。

一方、磁気を用いたエレクトロニクス素子開発では、DRAMと同等の高速性と記憶容量とともに、
電源を切ってもデータが消えない性質(不揮発性)を有するMRAM(磁気抵抗メモリ)や
STT-RAM(スピン注入メモリ)などのメモリが製品化されているが、論理演算素子の製品化の例はない。

この磁気を用いる論理演算素子に関して、数年前より理論的に実現が可能であることが報告され、
また実験的にはこの論理演算素子を構成する機能の一部(信号伝達)だけにスピン波を用いて演算を行ったことが
2008年に報告されている。ところが、その後、多くの研究者がスピン波を演算そのものに使う
論理演算素子に挑戦してきたものの、「伝達方向が磁性体の磁化方向に依存しかつ直進性を有する」という
スピン波の性質がネックとなり、スピン波を演算素子に適用する鍵となる「2つのスピン波の重ね合せ」を可能とする
素子構造の設計は、これまで実現していなかった。

例えば、磁気を用いた論理演算素子の実験的な研究報告では、スピン波が減損せずに伝達できるという
特徴を持つ絶縁性の磁性体(イットリウム鉄ガーネット:YIG)を用いて、2つのスピン波をデバイス内部で
伝達する機能は実現されていた。しかし、この研究では演算そのものは、磁性体の外部で
スピン波を電気信号に変換した後に足し合わせることで実現しており、演算そのものは
現行の論理演算素子と同様に電気信号を用いるものだった。

>>2以降に続きます)[1/2]

ソース:マイナビニュース(2013/05/17)
http://news.mynavi.jp/news/2013/05/17/213/
関連リンク:プレスリリース
http://www.jst.go.jp/pr/announce/20130516/index.html
関連リンク:APEXに掲載された論文要旨
「Electrical Demonstration of Spin-Wave Logic Operation」(英文)
http://apex.jsap.jp/link?APEX/6/063001/
2ケンシロウとユリア百式φ ★:2013/05/24(金) 22:56:15.10 ID:???
>>1の続きです)

今回の研究では、磁性体の内部で2つのスピン波を直接足し合わせを実現するために、
将来的な微細加工を念頭に導電性の磁性体(パーマロイ合金:NiFe)を用い、その両端のそれぞれに
高周波信号を加えることで磁性体内部に2つのスピン波を起こし、磁性体の中心部で
この2つのスピン波を衝突させ、足し合わせることができる素子構造(三端子素子)を新たに考案した。

この素子に位相の異なる2つのスピン波を発生させ、それらのスピン波の重ね合わせ状態を観測した。
図1のように、素子の両端に高周波電流を加えるとその磁場により2つのスピン波が生じ、
それらが素子の中央部で衝突する。この衝突時に生じる信号を検出することで、
波の重ね合わせ状態を詳細に調べたという。

図1 スピン波の重ね合せを起こさせる「三端子素子」の概念図。
左右の電極に加えられた高周波電流により生じた磁場によってスピン波1、スピン波2が生じ、
これらのスピン波が中央で衝突することで、スピン波の重ね合せが起きる。
その状態を中央の電極を用いて誘導起電力として観測する

http://news.mynavi.jp/news/2013/05/17/213/images/001l.jpg

この結果、衝突時にスピン波の位相が一致するように2つの磁場を入力した場合には、
図2(a)上の波形に示すように大きな信号(誘導電圧信号)が得られた。
一方、スピン波の位相を180度ずらして入力した場合には、図2(a)下の波形に示すように
信号が消滅することを観測した。この結果は、2つのスピン波がその位相の違いにより、
スピン波が強め合った状態(信号"1"に相当)と打ち消し合った状態(信号"0"に相当)が
素子の中で実現していることを示す。

この現象は、スピン波として入力した2つの信号の位相を変えることで、素子内部で加算、
または減算された信号が得られることを示すものであり、スピン波を用いて、
加算減算の論理演算が初めて実現できたことを示している。

また、この図2(a)に示された実験では7GHzの高周波電流を用いており、
この高周波領域の信号でも作動することが確認されたほか、2つのスピン波の位相差を
連続的に変化させると、図2(b)に示すように信号強度は連続的に変化することが示された。
これは、スピン波の重ね合せ安定であることを示しており、種々の応用用途への適用が
可能なことを示唆しているという。

図2 観測された7GHzのスピン波の重ね合わせ状態。
(a)2つのスピン波が強め合った場合の信号(constructive)と打ち消し合った場合の
信号(destructive)。(b)2つのスピン波の位相差を連続的に変化させた場合に起きた
重ね合せ状態として観測された信号の振幅

http://news.mynavi.jp/news/2013/05/17/213/images/002l.jpg

現在、スピン波の生成やその検出に電気配線が用いられているが、
今後、電流発振や電界効果による高効率なスピン波の生成方法や、現行の電気を用いる論理演算素子とは
異なる新しい磁気デバイスの集積方法が開発されれば、低消費電力な論理演算装置の実現が期待できるという。

図3 既存研究および技術と本成果の比較概念図。
黄色が電気エネルギー(電流)、青色が磁気エネルギー(磁気の波(スピン波))を表す。
既存の演算装置は全て電流を使用しているのに対し、Schneiderは2008年に演算の前後の
信号伝達をスピン波で実現した。今回、5年間進展がなかった演算部分に至るまでを
一貫してスピン波で行うことに成功した
http://news.mynavi.jp/news/2013/05/17/213/images/003l.jpg

なお、研究グループでは、今回の技術を発展させて、実用的な論理演算装置を実現するためには、
スピン波を効率的に発生させる方法、現行と異なるスピン波が取り扱える新しい回路の
集積化技術の開発やスピン波により発生する電気ノイズへの対策などのさまざまな技術開発が必要だが、
これらの課題を克服することで、現行の論理演算素子を凌駕することが期待されるとコメントしている。

【おわり】[2/2]
3名無しのひみつ:2013/05/24(金) 23:04:47.22 ID:zaB25kXe
長々と書いてあるけど、この方式のメリットが説明されてない。
ひとつだけ省電力ってあるけど、どのくらいなの?
電源OFFでも状態を保存するんだろうけど、どれだけメリットなのか?

スピードは? 集積度は?
4名無しのひみつ:2013/05/24(金) 23:22:47.25 ID:+eccfPDE
今回の研究テーマはそんなことじゃねーだろ
5名無しのひみつ:2013/05/24(金) 23:32:33.15 ID:ZPKDXo3n
スパイバー
6名無しのひみつ:2013/05/24(金) 23:39:34.62 ID:hixxW5VO
>>3 君が知る必要はない
7名無しのひみつ:2013/05/24(金) 23:44:19.24 ID:EjWhX4Jl
こんだけの事やっても脳ニューロンの万分の一の効率なのさ
8名無しのひみつ:2013/05/25(土) 00:07:18.26 ID:/x27Nb+0
HDDが多値化されるわけだな
9名無しのひみつ:2013/05/25(土) 00:34:40.37 ID:GyIQLNXz
パラメトロンと名付けよう。
10名無しのひみつ:2013/05/25(土) 01:36:01.36 ID:veOEDCyj
なるほどわからん
11名無しのひみつ:2013/05/25(土) 01:38:59.25 ID:780lKjvi
>>1-2
こんなの何の意味もないだろw




左右対称ww
12名無しのひみつ:2013/05/25(土) 02:20:42.87 ID:K5h8/eES
スレタイであきらめた
13名無しのひみつ:2013/05/25(土) 13:26:29.14 ID:2uTgfG9r
何GBか言ってくれないと分からない
14名無しのひみつ:2013/05/26(日) 06:37:51.46 ID:oLITq7WL
電流を使った演算は数十ギガヘルツが理論限界らしいから
これが突破口になるのかな?
15名無しのひみつ:2013/05/26(日) 17:24:18.18 ID:Kg9wOUS+
これ三端子じゃ無くね?
16名無しのひみつ:2013/05/26(日) 18:32:46.75 ID:NBVoYtH3
論理合成っていったら二つの入力スピン波から出力スピン波を得ることを
期待するからなぁ それはできてないよね
17名無しのひみつ:2013/05/27(月) 04:22:27.16 ID:OkGWywoH
いつかこれが関係してくるかな
http://www.jst.go.jp/pr/announce/20121209/index.html
18名無しのひみつ:2013/05/27(月) 22:31:24.28 ID:rcZ0sw/C
使えるかは別として新しい技術を作り出すことは良いことじゃん

今は使えなくても将来他の技術と組み合わせれば革新的なものになるかもしれないわけだし
19名無しのひみつ
>>11
いまだにこんなこと信じてるバカが居るのかwww