質量半径がvで変化すると質量内部に流れる時間が1-(v/c)になる
半径が光速で膨張すると0の時間が流れ 半径が光速で縮小すると2の時間が流れる
質量0の質量に流れる時間は2 質量0以上の質量に流れている時間は1
質量外では空間は直進し質量内では回転するためこの時間比になる
電場Eと磁場Hが静止した座標で回転すると質量になるとする
シュバルツシルト半径の円上に静電場エネルギーと静磁場エネルギーが質量エネルギー分存在している
2π*2GM/C^2*(1/2)*(μE^2+εH^2)=MC^2
μE^2=εH^2
μE^2=C^4/(4πG) εH^2=C^4/(4πG)
E=C^2/√(4πGε) H=C^2/√(4πGμ)
つまり上記の電場と磁場が光速でシュバルツシルト半径の円上を光速回転して質量を構成する
(1/2)*(μE^2+εH^2)=(1/2)*(√μ*E+i√ε*H)(√μ*E-i√ε*H)
√(μE^2+εH^2)*e^(iφ) φ=arctan[(√ε*H)/(√μ*E)]
√(μE^2+εH^2)*e^(-iφ) φ=arctan[-(√ε*H)/(√μ*E)]
hν=E*i^cosθ+H*i^sinθ
電磁波は電場と磁場が虚数性を互いに交換し合いながら光速で進むもの
電流Iが直進するとIの周囲に右回りにBが発生
磁束Bが直進するとBの周囲に左回りにEが発生
電場Eが直進すると電荷Qが直進しているとみなせ電流I'とみなせる
I'が直進するとI'の周囲に右回りにB'が発生
B'が直進するとB'の周囲に左回りにEが発生
B=μIsinωt/(2πR)
φ=μIsinωt/(2πR)*S
∫Eds=-μωIcosωt/(2πR)*S
E=-μωIcosωt/(2πR)
-εμωIcosωt/(2πR)=Q
εμω^2Isinωt/(2πR)=dQ/dt=I
B'=εμ^2ω^2μIsinωt/(2πR)^2
E'=-εμ^2ω^3μIcosωt/(2πR)^2
Q'=-ε^2μ^2ω^3μIcosωt/(2πR)^2
I'=ε^2μ^2ω^4μIsinωt/(2πR)^2
ε^2μ^2ω^4μIsinωt/(2πR)^2=εμω^2Isinωt/(2πR)=Isinωt
ω^2=(2πR)/(εμ)
ω=√(2πR)*C
ω=√(4πGM/C^2)*C
ω=√(4πGM)
電子が光速で運動するとMが無限に近づき周波数が無限に近づくため電磁波として認識可能な周波数になる
ω=√(4πGM)
2πν=√(4πGM)
ν=√(GM/π)
hν=h√(GM/[π*√(1-(v/c)^2))を常に全方位に照射している
電子は電磁波の円だとすると運動するとシュバルツシルト半径が増加し電磁波円の半径が増加するため
そのさいに電磁波が磁場と電場にわかれて周囲に回転しながら飛び出してくる