場の量子論 Part9

このエントリーをはてなブックマークに追加
476ご冗談でしょう?名無しさん
何もない空間にEのエネルギーの電磁波が飛び交っておりCで常に全座標から全方位に直進している
全座標から全方位に飛び出すため相殺されて認識できない
この電磁波が質量の存在する座標に飛び込む際にはC+√(2GM/R)になり飛び出す際にはC-√(2GM/R)になる
つまり電磁波の速度は可変だが質量はこの電磁波により構成されているため速度が変わると押し流されるため重力が生じる
つまり質量に向かう電磁波の速度のほうが速いため質量は周囲の空間を引き込むように見えるが同時に空間が湧き出している
質量に飛び込まない電磁波は常にC
E{∫dV-∫4πR^2/(1+√(2GM/(C^2R) )dR }+ E{∫4πR^2/(1-√(2GM/(C^2R) )dR-∫dV}=MC^2
E*∫[2GM/C^2→∞]8π*√(2GM/(C^2R) )*1/(1-2GM/(C^2R) )dR =C^2
√(2GM/(C^2R) )=X
-(1/(2R))*√(2GM/(C^2R) )dR=dX
-16πE*((2GM)/C^2)*∫[1→0]1/{ X^2*(1-X^2) }dX =MC^2
-16πE*((2GM)/C^2)*∫[1→0]1/X^2+1/(1-X^2) dX =MC^2
-16πE*((2GM)/C^2)*[-1/X+(1/2)*log{(1+X)/(1-X)} ] dX =MC^2
-16πE*((2GM)/C^2)*[-1+(1/2)*log{2/0}+1/0 ] dX =MC^2
E=C^4/(32πG)
477ご冗談でしょう?名無しさん:2013/11/16(土) 01:59:25.55 ID:???
E*sin(t/C)の電磁波を周囲にばらまく座標とE*sin(-t/C)の電磁波を周囲にばらまく座標を
互いに隣接しないよう三次元空間に積み上げたものが宇宙空間
つまり湧き出したエネルギーが横で即時に吸収されるため認識できない
このブロックの配置がずれると電磁波が現れる
二つの電磁波照射器を置き互いに向けてE*sin(t/C)とE*sin(-t/C)の電磁波を放つと
間には電磁波がないように見える
片方の位相がφずれると二つの電磁波照射器がお互いに電磁波E*√(2-2cosφ)*sin(t/C+ξ)を放っているように見える
478ご冗談でしょう?名無しさん:2013/11/16(土) 02:13:17.29 ID:???
すべての座標がωの振動数で電磁波を全方位に照射しているとき
E*sin(ωt)+E*sin(-ωt)=0の相殺が全座標で起きるが
もし一座標でだけω'の振動数に代わると
E*sin(ω’t)+E*sin(-ωt)だけの電磁波エネルギーが一座標から全方位にばらまかれることになる
つまり一座標以外でω’に代わった時は
E*sin(ω’t)+E*sin(-ωt)だけのエネルギーが一座標に収束することになる
つまり質量は周囲の座標から発散する電磁波の振動数を変調させ
自身にエネルギーを収束させる
479ご冗談でしょう?名無しさん:2013/11/16(土) 02:42:24.04 ID:???
つまりすべての座標にωがわりあてられており
特定の一座標でωが変化すると電磁波が全方位に飛ぶが
このとき特定の一座標のωが変化したのか
特定の一座標以外のωが変化したのか区別できない
480ご冗談でしょう?名無しさん:2013/11/16(土) 14:47:05.20 ID:???
E*sin(ωt+φt)+E*sin(-ωt)=E*{sinωtcosφt+sinφtcosωt-sinωt}
E*{sinωt(cosφt-1)+sinφtcosωt}=E*√(2-2cosφt)*sin(ωt+ξt)
cosξt=(cosφt-1)/√(2-2cosφt) sinξt=sinφt/√(2-2cosφt)
cosξt=(cosφt-1)/[2*sin(φt/2)] sinξt=sinφt/[2*sin(φt/2)]

すべての座標が放射吸収する電磁波の振動数がωであるとする
E*√(2-2cosφt)*sin(ωt+ξ)だけのエネルギーが特定座標から放たれたとき
特定座標の振動数がω+φになったのか 特定座標以外の全座標の振動数がω-φになったのか区別できない
481ご冗談でしょう?名無しさん:2013/11/16(土) 15:35:59.45 ID:???
ωはその座標に流れる時間に比例するため
質量内部の時間が加速すると電磁波が放射される
MC^2/ω=MC^2/(ω+φ)+M*E*√(2-2cosφt)*sin(ωt+ξ)
C^2*φ/{ω(ω+φ)}=E*√(2-2cosφt)*sin(ωt+ξt)
C^2*φ/{ω(ω+φ)}=E*√(1-cosφt)
C^2*φ/{ω(ω+φ)}=E*√2*sin(φt/2)
C^2*φ/{ω(ω+φ)*√2*sin(φt/2)}=E
lim [φ→0] (φt/2)/sin(φt/2)*2/t=2/t
√2*C^2/{ω^2*t}=E
t=1として
√2*C^2/ω^2=E
ω=(1/c)とすれば
E=√2*C^4
482ご冗談でしょう?名無しさん:2013/11/16(土) 20:23:13.54 ID:???
√2*C^4*sin(t/C)の湧き出しと√2*C^4*sin(-t/C)の湧き出しが交互に起きている
E=√2*C^4*sin(t/C)
P=√2*C^3*cos(t/C)
F=-√2*C^2*sin(t/C)
のエネルギーと運動量と力が存在しているが打ち消されて見えない
lim[t→∞](1/T)*∫[0→T]cosωt dt=1/√2
平均化されたエネルギーはC^4になる