54 :
名無しに影響はない(栃木県):
55 :
名無しに影響はない(栃木県):2012/04/14(土) 13:53:05.50 ID:PzUMpoQ1
2.測定結果
生データは以下のとおり。連続投稿禁止の制限に引っかかって途中でちぎれるかも。
1. n=30 BG
x <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41)
> mean(x)
[1] 43.9
> var(x)
[1] 68.02414
>
2. n=35 試料
x <- c(42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47)
> mean(x)
[1] 40.74286
> var(x)
[1] 26.96134
>
3. n=33 BG
x <- c(38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38)
> mean(x)
[1] 39.69697
> var(x)
[1] 44.4678
>
4. n=33 試料
x <- c(40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43)
> mean(x)
[1] 39.84848
> var(x)
[1] 30.88258
>
5. n=33 BG
x <- c(34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
> mean(x)
[1] 37.90909
> var(x)
[1] 41.52273
>
56 :
名無しに影響はない(栃木県):2012/04/14(土) 13:54:55.77 ID:PzUMpoQ1
4.データ貼り付け
全体の分析
x <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41 ,
42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47 ,
38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38 ,
40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43 ,
34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 , 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4 ,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5)
> mean(x)
[1] 40.35976
> var(x)
[1] 44.36671
> oneway.test(x ~ g, var = T)
一元配置分散分析
データ: x と g
F = 3.6123, 第1自由度 = 4, 第2自由度 = 159, P値 = 0.007568
有意。群別の差異がある。
> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)
データ: x と g
バートレットのK二乗値 = 8.1988, 自由度 = 4, P値 = 0.08456
有意。先の分散分析が無効。
> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)
データ: x と g
F = 2.6566, 第1自由度 = 4.000, 第2自由度 = 78.113, P値 = 0.03896
有意。群別の差異がある。
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 1.2195122 1.219512
25 7 4.2682927 5.487805
30 18 10.9756098 16.463415
35 43 26.2195122 42.682927
40 57 34.7560976 77.439024
45 24 14.6341463 92.073171
50 10 6.0975610 98.170732
55 2 1.2195122 99.390244
60 0 0.0000000 99.390244
65 1 0.6097561 100.000000
>
57 :
名無しに影響はない(栃木県):2012/04/14(土) 13:56:03.19 ID:PzUMpoQ1
バックグラウンドと試料の比較
x <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41 ,
42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47 ,
38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38 ,
40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43 ,
34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
> oneway.test(x ~ g, var = T)
一元配置分散分析
データ: x と g
F = 0.0068, 第1自由度 = 1, 第2自由度 = 162, P値 = 0.9346
有意ではない。バックグラウンドと試料の差異は不明。
> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)
データ: x と g
バートレットのK二乗値 = 8.2786, 自由度 = 1, P値 = 0.004012
有意。先の分散分析が無効。
> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)
データ: x と g
F = 0.0075, 第1自由度 = 1.000, 第2自由度 = 161.976, P値 = 0.9309
有意ではない。バックグラウンドと試料の差異は不明。
>
58 :
名無しに影響はない(栃木県):2012/04/14(土) 13:56:49.19 ID:PzUMpoQ1
繰り返しの比較
1. n=96 BG
x <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41 ,
38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38 ,
34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,
3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3)
> mean(x)
[1] 40.39583
> var(x)
[1] 55.92588
> oneway.test(x ~ g, var = T)
一元配置分散分析
データ: x と g
F = 5.7929, 第1自由度 = 2, 第2自由度 = 93, P値 = 0.004256
有意。繰り返しによる差異ある。
> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)
データ: x と g
バートレットのK二乗値 = 2.2143, 自由度 = 2, P値 = 0.3305
先の分散分析は無効。
> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)
データ: x と g
F = 5.0623, 第1自由度 = 2.000, 第2自由度 = 60.331, P値 = 0.00928
有意。繰り返しによる差異ある。
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
20 2 2.083333 2.083333
25 5 5.208333 7.291667
30 12 12.500000 19.791667
35 26 27.083333 46.875000
40 28 29.166667 76.041667
45 14 14.583333 90.625000
50 6 6.250000 96.875000
55 2 2.083333 98.958333
60 0 0.000000 98.958333
65 1 1.041667 100.000000
>
59 :
名無しに影響はない(栃木県):2012/04/14(土) 13:57:34.87 ID:PzUMpoQ1
2. n=68 試料
x <- c(42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47 ,
40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43)
g <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 , 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)
> mean(x)
[1] 40.30882
> var(x)
[1] 28.63455
> oneway.test(x ~ g, var = T)
一元配置分散分析
データ: x と g
F = 0.4707, 第1自由度 = 1, 第2自由度 = 66, P値 = 0.4951
有意ではない。繰り返しによる差異は不明。
> bartlett.test(x, g)
分散の一様性の検定(バートレット検定)
データ: x と g
バートレットのK二乗値 = 0.1498, 自由度 = 1, P値 = 0.6987
有意。先の分散分析は無効。
> oneway.test(x ~ g)
一元配置分散分析(等分散を仮定しない場合)
データ: x と g
F = 0.4688, 第1自由度 = 1.000, 第2自由度 = 64.946, P値 = 0.496
有意ではない。繰り返しによる差異は不明。
> dosuu.bunpu(x, 5)
freq pcnt cum.pcnt
25 2 2.941176 2.941176
30 6 8.823529 11.764706
35 17 25.000000 36.764706
40 29 42.647059 79.411765
45 10 14.705882 94.117647
50 4 5.882353 100.000000
>
60 :
名無しに影響はない(栃木県):2012/04/14(土) 13:58:10.33 ID:PzUMpoQ1
バックグラウンドと試料の比較
1. n=96 BG
gr1 <- c(36, 45, 46, 49, 34, 58, 37, 40, 39, 47, 44, 47, 45, 54, 66, 29, 34, 47, 39, 59, 43, 37, 44, 43, 44, 39, 54, 44, 33, 41 ,
38, 32, 44, 51, 43, 40, 38, 22, 39, 40, 38, 42, 37, 32, 24, 35, 37, 44, 35, 51, 37, 46, 39, 40, 42, 44, 47, 43, 47, 50, 43, 32, 38 ,
34, 41, 31, 44, 38, 43, 39, 42, 44, 46, 41, 48, 33, 29, 36, 33, 41, 27, 36, 46, 36, 26, 38, 33, 51, 30, 46, 42, 35, 41, 39, 35, 27)
> mean(x)
[1] 40.39583
> var(x)
[1] 55.92588
2. n=68 試料
gr2 <- c(42, 42, 49, 45, 42, 41, 39, 43, 42, 37, 35, 44, 42, 44, 41, 31, 47, 45, 40, 33, 35, 35, 45, 49, 38, 40, 50, 47, 36, 34, 39, 42, 32, 33, 47 ,
40, 38, 41, 40, 50, 50, 42, 39, 41, 45, 40, 44, 40, 36, 42, 36, 40, 27, 35, 40, 36, 51, 34, 37, 25, 47, 43, 36, 36, 40, 40, 41, 43)
> mean(x)
[1] 40.30882
> var(x)
[1] 28.63455
> t.test(gr1, gr2, v=T)
二標本t検定(分散が等しいと仮定できるとき)
データ: gr1 と gr2
t値 = 0.0822, 自由度 = 162, P値 = 0.9346
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -2.004175 2.178194
標本推定値:
平均値x 平均値y
40.39583 40.30882
有意ではない。差があるかどうか不明
> t.test(gr1, gr2)
二標本t検定(Welchの方法)
データ: gr1 と gr2
t値 = 0.0869, 自由度 = 161.976, P値 = 0.9309
対立仮説: 母平均の差は,0ではない
95 パーセント信頼区間: -1.891316 2.065336
標本推定値:
平均値x 平均値y
40.39583 40.30882
有意ではない。差があるかどうか不明
> var.test(gr1, gr2)
二群の等分散性の検定
データ: gr1 と gr2
F = 1.9531, 第1自由度 = 95, 第2自由度 = 67, P値 = 0.004175
対立仮説: 分散比は,1ではない
95 パーセント信頼区間: 1.240164 3.022964
標本推定値:
分散比
1.953091
有意。分散が一様ではないので(Welchの方法)を使用する
>