こんな確率求めてみたい

このエントリーをはてなブックマークに追加
321既出だったらゴメソ
「3枚のカードがある。
 一枚は両面赤、一枚は両面青、一枚は片面赤でもう片面が青。
 ここから一枚取り出したところ、表は赤でした。
 さてこのカードの裏面は赤か青か。賭けるとしたらどっちが得か」


↑の問題を他の板でみかけたのですが、答えが2/3、1/2等があって
何が正しいのかわかりません。
どっちが正解ですか?どっちともはずれてますか?


と、いうのをさっきくだらねぇ問題は〜で聞いたのですが、両方の答えがかえってきました。
こっちにくるように言われたんですが、どなたか数学嫌いにもわかるように教えてくだされ。
322誘導した人:01/11/30 13:23
とりあえず、数学板向けの解答。

「一枚取り出したところ、表は赤」の確率をP1と置くと、
P1=赤赤を取り出す確率+赤青を取り出して、かつ赤が表になっている確率
  =1/3+1/3*1/2
  =1/3+1/6
  =1/2

「一枚取り出したところ、表は赤」のもとでの「裏も赤」の条件付確率をPとおくと、
  「一枚取り出したところ、表は赤」かつ「裏も赤」⇔「取り出したのは赤赤」
より、
P=「取り出したのは赤赤」の確率/P1
 =(1/3)/P1
 =(1/3)/(1/2)
 =2/3
323誘導した人:01/11/30 13:25
一般向けの説明としては、

取り出して見た片面が赤だったとき、
その赤は「赤赤の赤」である可能性のほうが「赤青の赤」である可能性より大きい。
従って、そのカードが「赤赤」である可能性に賭けるほうが得である。

てな感じでどう?結局これ↓と同じことを言ってるのだが。

>16 :マァヴ ★ :01/11/30 08:59
>カードc1〜c3があるとしよう。
>c1 赤−赤
>c2 赤−青
>c3 青−青
>なわけだな。
>で、一枚を引いたら、表が赤だったわけだ。
>この赤はc1の表、c1の裏、c2の表のいずれかになるわけだな。
>つまり、3通りのいずれかになるわけで
>c1の表の場合は、裏が赤
>c1の裏の場合は、裏が赤
>c2の表の場合は、裏が青
>ってことで赤である確立は2/3になるって寸法だ(^_^;)

時間がないのでこんなもんで勘弁。。
324132人目の素数さん:01/11/30 13:27
>>321
カードに表裏の区別がなくて、とりだしたとき
たまたま見える方を「表」と決める、という設定なら、
「表/裏」の組合せは

赤/赤、赤/赤、
青/青、青/青、
赤/青、青/赤

になる。注意すべきなのは、表裏が区別できないカードでも、
たしかに「2つの面」がある、ということ。だから「赤/赤」と「青/青」は
ふたとおりずつある。

さて、この中から表が「赤」である場合をしぼりこむと、

赤/赤、
赤/赤、
赤/青、

の3とおり。2/3の確率で裏が赤であることがわかる。
(ちなみに>>7は1/2だからな!)
>>323>>324
早速どうもありがとー。

>その赤は「赤赤の赤」である可能性

>「表/裏」の組合せは  赤/赤、赤/赤、


ここがポイントですね。
わかりました。ありがd