最近勉強し始めて統計の入門の本いくつか読んでみたけど、
実践を説明しつつもその理論的背景に触れてる本ってほとんど無いんだね。
例えば、t分布の話では、t分布は母分散が未知で小さな標本に対して使うもので、
どうやって信頼区間を計算していくのかが説明されていくけど、
なぜそれがt分布に従うのかの説明が薄いことが多い気がする。
多分それは、実際的な仕事として統計学を必要としている人が数学に対するリテラシーを
あまり持ちあわせていないことが多いからなんだろうけど、
やっぱりちょっと理論の支柱を端折られるとなんとなく気持ち悪い。
こういうところを端折らないでしっかり説明してくれてる良い参考書ってある?
おれもそう思う。
数学出身の人だと、確率論やったもんでなくとも、
大数の法則、中心極限定理など通過しているうちは納得出来るが、
いざ応用の段になって、これこれの標本には、ほにゃらら分布がよく合います、
というところでは、「ふ〜ん」というしかない。
実際の現場では、そうなってんだからつべこべ言わずにやれ!
ということなんだろうか?
統計学は最強の武器である、というならわかるが
最強の「学問」だそうだから。
数式を使用しないことを売りにしてる統計学入門書を手に取って
数式がない、証明がないというのは筋違いではなかろうか。
数理統計学ときちんと題名がついてるなら証明まで書いてる可能性が高いんじゃないかな。
>>412 統計学は数学と違って解釈が含まれるからな。
例えば、有意水準5%にする理由にしても経験的なものだし。
やっぱその辺が数学者からしたら、しっくりこないんだと思う。