現代数学の系譜11 ガロア理論を読む

このエントリーをはてなブックマークに追加
497現代数学の系譜11 ガロア理論を読む
>>479-495
みなさん、乙です。スレが進む日だな

>>496
繰り返しになるが、べき根拡大で解けるのは、ガロア群G=C5xV (V:クラインの四元群 http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%A9%E3%82%A4%E3%83%B3%E3%81%AE%E5%9B%9B%E5%85%83%E7%BE%A4
(C5は、5次巡回群)
の場合のみ

一般の5次方程式では、ガロア群G=S5=C2xA5 (A5は位数60の交代群で、これは単純群で、非可解。C2は、2次の巡回群)
となってしまうので、解けないと
498132人目の素数さん:2012/03/04(日) 20:11:32.05
>>494
詳しくないけど代数解析は佐藤とか柏原により少しは体系化されてるでしょ。
数論の一部(類体論その他)も数論幾何が発展することによりLanglands programの下に
体系化されるのではと夢想してる。
499132人目の素数さん:2012/03/04(日) 20:30:29.86
>>498
代数解析でも、非線型はまだまだ妄想の範囲w
ソリトンとパンルヴェの一部くらい。
500現代数学の系譜11 ガロア理論を読む:2012/03/04(日) 20:38:45.46
>>497
つづき

位数119 までの群の分類が下記にある
http://www.akanekodou.mydns.jp/math/pdf/finite_group.pdf
位数119 までの群の分類 Red cat 平成23 年10 月3 日

>>372-380
V=Aa+Bb+Cc+・・・ ガロアリゾルベント(ガロア分解式)
一般5次方程式では、Vは120の値を取る。この120個の値を集めて
ガロア(分解)方程式F(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*)で、代数的可解性の原則から根a,b,c・・・の有理式を持ってきても、全部Vとガロア(分解)方程式F(x)の土俵の上に乗っている
つまり、ガロアはVとF(x)で、根の有理式が全部乗る土俵を作った。代数的可解性の原則を認めれば、ここからこぼれるものはない

そして、元の方程式を解くことは、ガロア(分解)方程式F(x)が解けることと同じ
V=Aa+Bb+Cc+・・・ ガロアリゾルベント(ガロア分解式)は、根の置換と対応している>>414
そして、方程式のガロア群の構造は、ガロア(分解)方程式F(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*)に反映されている

元の方程式がべき根で解けるとは、ガロア(分解)方程式F(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*)がべき根で解けること
つまり、”ガロア(分解)方程式F(x)=(x-V)(x-V')(x-V'')・・・・(x-V''*)がべき根で解ける”→”ガロア群Gが、巡回群の拡大で構成される構造を持っているべき”だと

しかし、上記”位数119 までの群の分類”にあるように、一般に群には巡回群以外のいろいろな群があり、巡回群の拡大で構成される構造を持っている群ばかりではない
その一つが、位数60の5次の交代群A5で、これは巡回群の拡大になっていない。つまり、非可解であり、単純群でもあった
5次の既約方程式で解ける最大の群は、位数20 B'5 メタ巡回群の場合で、それならべき根で解ける>>443(ガロア原論文では線形群とされている)
これが、一般の5次方程式が解けなず、どんな5次方程式なら解けるかの分かりやすい説明かな

5次方程式の可解性の高速判定法は>>443
また、可解な5次方程式について 大迎規宏 兵庫教育大修士論文 2003>>443では、根の公式が導かれている
501現代数学の系譜11 ガロア理論を読む:2012/03/04(日) 20:42:15.49
>>500 訂正
これが、一般の5次方程式が解けなず、どんな5次方程式なら解けるかの分かりやすい説明かな
 ↓
これが、一般の5次方程式が解けず、どんな5次方程式なら解けるかの分かりやすい説明かな
502132人目の素数さん:2012/03/04(日) 20:48:41.92
>>497
G=S5=C2xA5 
とはならないよ