くだらねぇ問題はここへ書け ver3.14(66桁略)6406

このエントリーをはてなブックマークに追加
854132人目の素数さん
微分法の別の表現
2011年9月30日

以下の式を求めます.

x_{2}-x_{1}/t_{2}-t_{1}=x_{1}/t_{1}

x_{2}, t_{2}に1を代入します.
そして,x_{1},_{1}に1/2を代入します.

{1-(1/2)}/{1-(1/2)}=(1/2)/(1/2)=1

この分母と分子を分母で割ります.

{(1/2)/(1/2)}/{(1/2)/(1/2)}={(1/2)*(2/1)}/{(1/2)*(2/1)}=1/1

この分母と分子を2で割り続けます.

0.5/0.5, 0.25/0.25, ...

855132人目の素数さん:2011/09/30(金) 19:24:36.93
計算機で割り続けます.
計算機で割り切れなくなった値をεとします.

0.5/0.5,...,ε/ε

実際の計算では,割り切れなくなった値の一つ前の値を用います.
これにより,分母の下で分子の変化が分かります.
そのため,分母と分子は残して置きましょう.

極限操作したε/εが得られました.
また,前に求めた値x_{1}/t_{1}=(1/2)/(1/2)が得られています.
これらは,1で等しくなります.

x_{1}/t_{1}=(1/2)/(1/2)=ε/ε=1

これは微分法の別の表現に使えそうです.
856132人目の素数さん:2011/09/30(金) 19:24:59.88
The different expression of the differentiation
September 30, 2011

I demand the following an expression.

x_{2}-x_{1}/t_{2}-t_{1}=x_{1}/t_{1}

I substitute 1 for x_{2}, t_{2}.
And I substitute 1/2 for x_{1},_{1}.

{1-(1/2)}/{1-(1/2)}=(1/2)/(1/2)=1

I divide this denominator and numerator by a denominator.

{(1/2)/(1/2)}/{(1/2)/(1/2)}={(1/2)*(2/1)}/{(1/2)*(2/1)}=1/1

I continue dividing this denominator and numerator by 2.

0.5/0.5, 0.25/0.25, ...
857132人目の素数さん:2011/09/30(金) 19:25:22.17
I continue dividing it with a computer.
I assume the value that was not divisible with a computer ε.

0.5/0.5,...,ε/ε

By the real calculation, I use a value before one of the values that were not divisible.
I in this way understand the change of molecules under the denominator.
Therefore a denominator and the molecules do not finish, and let's put it.

ε/ε which operated a limit was provided.
Moreover, value x_{1}/t_{1}=(1/2)/(1/2) which I found before is provided.
These equal with 1.

x_{1}/t_{1}=(1/2)/(1/2)=ε/ε=1

This seems to be usable in the different expression of the differentiation.