>>66 a_n と b_n の相乗平均(g_n)について
〔類題〕
g_n = (1 + 1/n)^(n + 1/2), (nは正の整数)
とおくとき、nが増加すると g_n は減少することを證明せよ。
>>68 二項定理より
{(n^2)/(n^2 -1)}^(2n+1) = {1 + 1/(n^2 -1)}^(2n+1)
> Σ[k=0,3] C[2n+1,k]/(n^2 -1)^k
= 1 + (2n+1)/(n^2 -1) + (2n+1)n/(n^2 -1)^2 + (2n+1)n(2n-1)/{3(n^2 -1)^3}
= 1 + (2n+1)/(n^2 -1) + (2n+1)n/(n^2 -1)^2 + n/(n^2 -1)^2 (← *)
= 1 + 2/(n-1) + 1/(n-1)^2
= {1 + 1/(n-1)}^2
= {n/(n-1)}^2,
∴ {n/(n-1)}^(2n-1) > {(n+1)/n}^(2n+1),
∴ g_(n-1) > g_n,
* (2n+1)(2n-1) = 4n^2 -1 > 3(n^2 -1),