【数セミ】エレガントな解答をもとむ【2011.2】

このエントリーをはてなブックマークに追加
68132人目の素数さん
>>66
a_n と b_n の相乗平均(g_n)について

〔類題〕
g_n = (1 + 1/n)^(n + 1/2), (nは正の整数)
とおくとき、nが増加すると g_n は減少することを證明せよ。
69132人目の素数さん:2011/11/20(日) 13:16:27.49
>>68

二項定理より
 {(n^2)/(n^2 -1)}^(2n+1) = {1 + 1/(n^2 -1)}^(2n+1)
   > Σ[k=0,3] C[2n+1,k]/(n^2 -1)^k
   = 1 + (2n+1)/(n^2 -1) + (2n+1)n/(n^2 -1)^2 + (2n+1)n(2n-1)/{3(n^2 -1)^3}
   = 1 + (2n+1)/(n^2 -1) + (2n+1)n/(n^2 -1)^2 + n/(n^2 -1)^2  (← *)
   = 1 + 2/(n-1) + 1/(n-1)^2
   = {1 + 1/(n-1)}^2
   = {n/(n-1)}^2,
∴ {n/(n-1)}^(2n-1) > {(n+1)/n}^(2n+1),
∴ g_(n-1) > g_n,

 * (2n+1)(2n-1) = 4n^2 -1 > 3(n^2 -1),