>>804-805 {2n/(2n+1)}e < a_n < {(2n+1)/(2n+2)}e,
{(2n+2)/(2n+1)}e < b_n < {(2n+1)/2n}e,
は同値
左側
>>811 と相加相乗平均より
{2√(n(n+1))/(2n+1)}e < e < g_n,
右側
(1 - 1/k^2)^(k+1) > 1 -(k+1)/k^2 = (k^2 -k-1)/k^2, (下に凸)
a[k]/a[k-1] = (k+1)^k・(k-1)^(k-1)/k^(2k-1) > {2k/(2k-1)}・{(2k+1)/(2k+2)},
k = n+1〜∞ について掛けて
e / a[n] > (2n+2)/(2n+1),
a[n] < {(2n+1)/(2n+2)}e,
>>804-805 g_n = √(a_n・b_n) とおくと
>>838 より
e < g_n < {(2n+1)/2√(n(n+1))}e < {1 + 1/(8n^2)}e,
>>824 (与式) = √(n(n+1))・g_n - √((n-1)n)・g_(n-1)
= {√(n(n+1)) - √((n-1)n)}・e + O(1/n)
= 2n/{√(n(n+1)) + √((n-1)n)}・e + O(1/n)
= e + O(1/n)
→ e, (n→∞)
>>838 より
e < g_n < {(2n+1)/2√(n(n+1))}e < {1 + 1/(8n(n+1))}e,
でござるよ。
もっとも、マクローリンを使えば一発だが...
log(g_n) = (n + 1/2)log(1 + 1/n)
= (n + 1/2){1/n - 1/(2n^2) +1/(3n^3) - …}
= 1 + 1/(12n^2) -1/(12n^3) + 3/(40n^4) - …
< 1 + 1/[12n(n+1)] - 1/[288(n^2)(n+1)^2] + …
∴ e < g_n < {1 + 1/[12n(n+1)]}e,