2x^2-y^2=1のx>0の部分に点Qを取り、
点Pをy=x上に取る。
また、点A(a,0)(a>0)とし、AP+PQをr(Q)とする。
今、Q(3/4,√2/4)において最小値をとるaを求める。
単純に考えて、Qのy=xに対する対称点Q'からx軸へ降ろした
垂線の足がAになると思うのですが。
x軸上どこにAを動かしても、折れ線になる限り上記のAより短くは
できないと思うので、しかし答えは、
a=3√2/8なのです。
今年の慶応医の問題で、
解けた人5人ぐらいしかいないんじゃないかなと思うのですが、
どなたかお願いします。