不等式への招待 第4章

このエントリーをはてなブックマークに追加
535132人目の素数さん
(1)
θが0≦θ<2πの範囲を動くとき

  15(sinθ)^2+12sinθcosθ+16(cosθ)^2

の最大値を求めよ。

(2)
θが0≦θ<2πの範囲を動くとき

  15sinθ+12sinθcosθ+16(cosθ)^2

の最大値を求めよ。


http://www.casphy.com/bbs/test/read.cgi/highmath/1102511185/l50
より
536132人目の素数さん:2009/10/12(月) 02:59:02
537132人目の素数さん:2009/10/12(月) 05:41:07
>>523 の〔類題〕

・1≦K≦√3 のとき
 sin(A) + sin(B) + sin(C) > K{cos(A)+cos(B)+cos(C)} + 1 - (√2)(K-1),

・0≦K≦1のとき
 sin(A) + sin(B) + sin(C) > K{cos(A)+cos(B)+cos(C)} + (2-K) + (1-K)(1/3)C,

(略証)
 0≦K≦√3 と C≦π/3 より
 cos(C/2) - K・sin(C/2) ≧ (√3 -K)/2 ≧ 0,
 sin(A) + sin(B) > K{cos(A)+cos(B)-sin(C)} + 1 + cos(C),
 sin(A) + sin(B) + sin(C) > K{cos(A)+cos(B)+cos(C)} + 1 + (1-K){sin(C)+cos(C)},
ところで、 C≦π/3 より
 1 + (1/3)C ≦ cos(C) + sin(C) ≦ √2,
(終)
538132人目の素数さん:2009/10/13(火) 21:14:11
>>535 出題元の解答は…

〔補題〕
 |a・cos(x) + b・sin(x)| ≦ √(a^2 + b^2),

(略証)
 {a・cos(x) + b・sin(x)}^2 = a^2 + b^2 - {b・cos(x) - a・sin(x)}^2 ≦ a^2 + b^2, (終)

(1)
 (与式) = (31/2) +6sin(2x) +(1/2)cos(2x) ≦ (31/2) + √{6^2 + (1/2)^2},

(2) 
 (与式) = 3sinθ(5+4sinθ) + 16(cosθ)^2
    = 3sinθ(5+4cosθ) + 25 - (5-4cosθ)(5+4cosθ)
    = 25 - (5 -3sinθ -4cosθ)(5+4cosθ)
    ≦ 25,

http://www.casphy.com/bbs/test/read.cgi/highmath/1102511185/111-112