280 :
132人目の素数さん:2008/10/09(木) 18:41:35
kingは代数に強かったと思うので
>>268をお願いします。
281 :
132人目の素数さん:2008/10/09(木) 19:37:26
線積分の問題です。
直円柱x^2+y^2=a^2と平面x+z=a(aは正の定数)の交わりに沿って、点P(a,0,0)から点Q(0,a,a)までの曲線Cとする。
∫_C A↑・dr↑
(A↑=(xa^2,ayz,xz^2)とする)
この積分なんですが、図からわからなくなりました。
この円柱って半径aで高さが…何なんですかね。
あとx+z=aの平面っていうのもわかりません。
z=-x+aの直線ではないんでしょうか?
282 :
268:2008/10/09(木) 19:52:26
早くお願いします。
283 :
132人目の素数さん:2008/10/09(木) 20:02:10
285 :
281:2008/10/09(木) 20:19:17
>>284 私は別に急いでいないので勝手に煽らないでくださいね。
286 :
KingMind ◆KWqQaULLTg :2008/10/09(木) 20:34:51
>>268 なんかおかしい。解釈によって自明に成立 or 自明に不成立。
示したい主張を正確に書き写すこと。
正則な複素関数で、コーシーの積分定理
2πi*f(a)=∫f(z)/z-a*dz
これで、実部および虚部は極大、極小を取らない。
これ関係の質問です。
すべての平面上で正則な複素関数の実部Ref(z)が有界であるとき
極大、極小を取らないので
R→∞でRef(z)→constになる
Ref(z)=constということは、コーシーリーマンの関係式より虚部もconst
したがって、正則な複素関数の実部が有界であるならその複素関数は実はconstである
これは正しいか?
>>277 微分可能性などを適当に仮定した上で
d/dx ∫[a(x),b(x)] f(x,y) dy
= b'(x) f(x,a(x)) - a'(x) f(x,b(x)) + ∫[a(x),b(x)] ∂/∂x f(x,y) dy
は非常に基本的。これで a(x) = 0, b(x) = g(x) とおけばよい。
290 :
289:2008/10/09(木) 21:23:22
>>289 基本的とか言いながら式間違えてた
d/dx ∫[a(x),b(x)] f(x,y) dy
= b'(x) f(x,b(x)) - a'(x) f(x,a(x)) + ∫[a(x),b(x)] ∂/∂x f(x,y) dy
が正しい。吊ってくる。
>>281 円柱x^2+y^2=a^2は半径がaで上下に無限の高さを持ちます
x+z=aは平面です(y軸に平行な平面になる)
円柱x^2+y^2=a^2を平面x+z=aで切った切り口は楕円で
積分路Cはその1/4です
x^2+y^2=a^2 を微分すると xdx+ydy=0 となるから(C上では)
(ayz)dy=-(azx)dx=-{a(a-x)x}dx である
x+z=a を微分すると dx+dz=0 となるから(C上では)
(xz^2)dz=-(xz^2)dx=-{x(a-x)^2}dx である
よって(C上では)
A↑・dr↑
=(xa^2)dx+(ayz)dy+(xz^2)dz
=(xa^2)dx-{a(a-x)x}dx-{x(a-x)^2}dx=・・・={-(a^2)x + 3ax^2 - x^3}dx
∫_C A↑・dr↑=∫_C {(xa^2)dx+(ayz)dy+(xz^2)dz}
=∫_[a→0] {-(a^2)x + 3ax^2 - x^3}dx
=∫_[0→a] {(a^2)x - 3ax^2 + x^3}dx=・・・=-(a^4)/4
__,. -─-- 、_
, - ' _,´ --──‐- )
,イ´__-___,. -‐ '__,. - '´
`ー----, - ' ´ ̄ `` 、__
__,ィ ヽ. `ヽ.
, '⌒Y / 、ヽ ヽ ヽ.
/ / i /l/|_ハ li l i li ハ
. // 〃 /l i|j_,.//‐'/ lTト l、l j N i |
{イ l / l li //___ リ_lノ lル' lハ. ソ ___◎_r‐ロユ
i| /レ/l l l v'´ ̄ , ´ ̄`イ !| ll,ハ └─‐┐ナ┐┌┘ _ ヘ____
ハ| ll∧ハヽ ト、 '''' r==┐ '''' /l jハ| ll ll /./┌┘└┬┘└┼────┘ロコ┌i
〃 ‖ レ'¨´ヽiへ. _ 、__,ノ ,.イ/|/ ノ ll l| </  ̄L.l ̄ ̄L.lL.! ┌┘|
ll ll { ⌒ヽ_/ } ー‐<.__ ′ l| ‖
‖ ‖ ヽ, /、 〈 |:::::::| `ヽ ‖
‖ {. ハ ヽ Y`‐┴、::::v l ‖
‖ |iヽ{ ヽ_ゾノ‐一’::::ヽ. | ‖
‖ |i:::::`¨´-- :::......:...:.:.::.}| ‖
‖ |i::::::ヽ._:::_:::::::::::::::::::_ノ | ‖
‖ |i::::::::::::i___:::::::::::/ |
jj::::::::r┴-- `ー‐ '⌒ |
〃:::::::マ二 _,ノ
//::::::::::::i ー 一 '´ ̄::.
,','::::::::::::::i::::::::::::::::::::::i::::::ヽ
__,. -─-- 、_
, - ' _,´ --──‐- )
,イ´__-___,. -‐ '__,. - '´
`ー----, - ' ´ ̄ `` 、__
__,ィ ヽ. `ヽ.
, '⌒Y / 、ヽ ヽ ヽ.
/ / i /l/|_ハ li l i li ハ
. // 〃 /l i|j_,.//‐'/ lTト l、l j N i |
{イ l / l li //___ リ_lノ lル' lハ. ソ ___◎_r‐ロユ
i| /レ/l l l v'´ ̄ , ´ ̄`イ !| ll,ハ └─‐┐ナ┐┌┘ _ ヘ____
ハ| ll∧ハヽ ト、 '''' r==┐ '''' /l jハ| ll ll /./┌┘└┬┘└┼────┘ロコ┌i
〃 ‖ レ'¨´ヽiへ. _ 、__,ノ ,.イ/|/ ノ ll l| </  ̄L.l ̄ ̄L.lL.! ┌┘|
ll ll { ⌒ヽ_/ } ー‐<.__ ′ l| ‖
‖ ‖ ヽ, /、 〈 |:::::::| `ヽ ‖
‖ {. ハ ヽ Y`‐┴、::::v l ‖
‖ |iヽ{ ヽ_ゾノ‐一’::::ヽ. | ‖
‖ |i:::::`¨´-- :::......:...:.:.::.}| ‖
‖ |i::::::ヽ._:::_:::::::::::::::::::_ノ | ‖
‖ |i::::::::::::i___:::::::::::/ |
jj::::::::r┴-- `ー‐ '⌒ |
〃:::::::マ二 _,ノ
//::::::::::::i ー 一 '´ ̄::.
,','::::::::::::::i::::::::::::::::::::::i::::::ヽ
295 :
132人目の素数さん:2008/10/09(木) 21:36:27
nを整数とし、S=(n-1)^3+n^3+(n+1)^3とする。
(1)Sが偶数であれば、nは偶数であることを示せ。
(2)Sが偶数であれば、Sは36で割りきれることを示せ。
お願いします><
Sを展開すると3n^3+6nです。
正攻法でないカッコよさげな解法希望
(1)
nが奇数ならsも奇数
(2)
nは偶数である。よって、nを2xとおくと
s=3*8x^3+6*2x=12x(2x^2+1)
12x(2x^2+1)はxが3の倍数なら36の倍数、1あまるなら3の倍数、2あまっても3の倍す
297 :
132人目の素数さん:2008/10/09(木) 21:48:26
>>296 ありがとうございます><
(1)は背理法使うってことですか?
あと(2)の1あまるなら…からがよく理解できません
ごめんなさい><
12x(2x^2+1)
xが3でわり1あまる→x=3k+1
2x^2+1→2(3k+1)^2+1→18k^2+12k+3→3の倍数
したがって12x(2x^2+1)は3の倍数
3でわって2あまるときも同様
>>298 コーシーの定理を証明せよ、という問題でなければ、それでよい。
302 :
277:2008/10/09(木) 22:45:53
303 :
238:2008/10/09(木) 23:05:19
304 :
268:2008/10/09(木) 23:08:39
>>282 こういうふうに反応されるのが嬉しいのだろうが、そういうふうになりすまして煽られのはただただ迷惑
305 :
280:2008/10/09(木) 23:19:26
>>286>>287 nをdで割った商bが自然数であることを考えると確かに自明のように思えました。ありがとうございます。
unko
307 :
132人目の素数さん:2008/10/10(金) 07:18:01
383
将棋の駒の動かし方を覚えただけでは、将棋が強いわけじゃない。
数学や物理学も、まぁ同じようなものだ。
そう思わないか?なぁking
309 :
KingMind ◆KWqQaULLTg :
Reply:
>>308 数学基礎論だけをしても応用はできない。