>>541 f_x = -sin(x) + sin(x+y) = 0
f_y = -sin(y) + sin(x+y) = 0
を解く
sin(x) = sin(y)
となるので
x = y か x+y = nπ (n=0,1,2)
x = y のときは
sin(x) = sin(2x)
sin(x) { 2cos(x) - 1} = 0
x = 0, π/3
(x,y) = (0,0), (π/3, π/3)
が極点の候補
x+y = nπのときは
sin(x) = sin(y) = 0
だから、(x,y) = (0,0), (0,π), (π,0), (π,π)
の4点が極点の候補