>>926 y=(1/x)^k の凸性を使うと
(1/i)^k < ∫[i-1/2,i+1/2] (1/x)^k dx,
∫[i,i+1] (1/x)^k dx < { (1/i)^k + (1/(i+1))^k } /2,
よって
1 + (1/2)^(k+1) + ∫[2,∞) (1/x)^k dx < ζ(k) < 1 + (1/2)^k + ∫[5/2,∞) (1/x)^k dx,
1 + (1/2)^k + {(5-k)/(2k-2)}(1/2)^k < ζ(k) < 1 + (1/2)^k + {1/(k-1)}(2/5)^(k-1),
(例)
1.625 < ζ(2) < 1.65
1.1875 < ζ(3) < 1.205
1.07291666… < ζ(4) < 1.08383333…
1.015625 < ζ(6) < 1.017673