>>29 それ京大の過去問になったことあるんじゃね?なんか見たことある。
(解)A,B,Cの対辺の長さをa,b,c、面積をSとして
S=(1/2)(a+b+c)r=(1/2)(sinA+sinB+sinC)Rr
S=(1/2)R^2sinA+(1/2)R^2sinB+(1/2)R^2sinC
により2r/R=(sin2A+sin2B+sin2C)/(sinA+sinB+sinC)
和積公式から
sin2A+sin2B+sin2C=4sinAsinBsinC、sinA+sinB+sinC=4cos(A/2)cos(B/2)cos(C/2)
∴2r/R=8sin(A/2)sin(B/2)sin(C/2)
一方で-logsin(x/2) (0<x<π)の凸性から
-(logsin(A/2)+logsin(B/2)+logsin(C/2))/3≧-logsin(((A+B+C)/3)/2)=-log(1/2)
∴sin(A/2)sin(B/2)sin(C/2)≦(1/8)
∴2r/R≦1 (等号はA=B=C=π/3のとき)