TAN(3π/11)+4SIN(2π/11)=?★2
>15 下
cos(kθ)/(cosθ)^k = {(cosθ+i・sinθ)^k + (cosθ-i・sinθ)^k} / [2(cosθ)^k]
= {(1+it)^k + (1-it)^k} /2, (t≡tanθ とおいた.)
納k=0,n] cos(kθ)/(cosθ)^k = {(1+it)^(n+1) -1}/(2it) + {(1-it)^(n+1) -1}/(-2it)
= {(1+it)^(n+1) -(1-it)^(n+1)} / (2it)
= sin((n+1)θ) / [(cosθ)^(n+1) ・t]
= sin((n+1)θ) / [(cosθ)^n ・sinθ].
蛇足だが...
納k=1,n] sin(kθ)/(cosθ)^k = {2 -(1+it)^(n+1) -(1-it)^(n+1)} / (2t)
= 1/t -cos((n+1)θ)/[(cosθ)^(n+1) ・t]
= (1/tanθ) -cos((n+1)θ)/[(cosθ)^n ・sinθ].