◆ わからない問題はここに書いてね 158 ◆

このエントリーをはてなブックマークに追加
484132人目の素数さん
1、A、B、C、D、E、Fの6チームがあり、それぞれのチームは他のチームと1試合ずつ試合を行う。
 各試合において、両チームの勝つ確率は1/2で、引き分けは無いものとする。
(1)6チームの勝ちが全て異なる確率
(2)A、B、Cの3チームがともに4勝1敗となる確率
(3)4勝1敗のチームがちょうと3チーム現れる確率

2、2つの数列の関係式
  a(n+1)=(4a(n)+b(n))/6
b(n+1)=(-a(n)+2b(n))/6
を満たしており、a(1)=1,b(1)=2である。
(1)4a(n+2)-4a(n+1)+a(n)=0を満たすことを示せ。
(2)数列{2^n×a(n)}は等差数列であることを示せ。
(3)a(n),b(n)の一般項を求めよ。

3、xy平面において、x≧0、-x^3≦y≦x^3なる範囲にある格子点全体の集合をSで表す。
(1)Sに属する格子点でx座標がmであるもののうち、最下端から数えてN番目にあたるもののy座標をm、Nを用いてあらわせ。
(2)Sに属する格子点(m,n)は、x座標がmであるもののうち最下端から数えて何番目になるか、m,nを用いてあらわせ。
(3)mを正の整数とするとき、Sに属する格子点でそのx座標がm-1以下のものの総数をmの4次式で表せ。
 (ここで、正の整数nに対して、証明をしないといけないところがありますがそこは省略して結構です。)
(4)Sに属する格子点全体に次のような順序で通し番号をつける。
 格子点(0,0),(1,-1),(1,0),(2,-8),(2,-7),…,(2,7),(2,8),(3,-27),…に対して、それぞれ、1,2,3,4,5,6,…
のように、x座標が小さいほど小さい番号をつけ、x座標が等しいときは、y座標小さいほど小さい番号をつける。
このとき、Sに属する格子点(m,n)の番号をm、nを用いてあらわせ

計算過程も含めてよろしくお願いします。