>869
a,b,c の基本対称式を a+b+c=s, ab+bc+ca=t, abc=u とおくと
(a+b)(b+c)(c+a) = st-u,
(左辺) = {(s^2 -t)^2 +4su}/(st-u)^2,
(s^2 -t)^2 -(9/4t)(st-u)^2 = F_2 + (3t/4s)F_1 + (9u/4s)F_0 + (u/4t)(st-9u) ≧0.
ここに、F_2 = s^4 -5(s^2)t +4t^2 +6su, F_1 = s^3 -4st +9u, F_0 = s^2 -3t.
>>399-401 ∴ (左辺) ≧ (9/4t).