•s“™Ž®‚ւ̵‘Ò ‘æ‚QÍ

‚±‚̃Gƒ“ƒgƒŠ[‚ð‚͂ĂȃuƒbƒNƒ}[ƒN‚ɒljÁ
>21
[‘OƒXƒŒ.565(4)]
@–³ŒÀæÏ•\Ž¦ sin(ƒÎx) = ƒÎx¥ƒ®[k=1,‡) {1-(x^2)/(k^2)} ‚ðŽg‚Á‚Ä‚Ý‚Ü‚·‚½B(‹“
‚©‚à)
@f(x^2) = log|sin(ƒÎx)/ƒÎx| - a¥{log(1-x^2) -log(1+x^2)}@(0…a…1) ‚Æ‚¨‚­‚ÆA
@f(y) = ƒ°[k=1,‡) log[1 -y/(k^2)] -a¥{log(1-y) -log(1+y)}, f(0) = 0.
@f '(y) = -ƒ°[k=1,‡) 1/(k^2 -y) +a¥{1/(1-y) +1/(1+y)}.
@@@@@= -ƒ°[k=2,‡) 1/(k^2 -y) -(1-a)/(1-y) +a/(1+y)@:’P’²Œ¸­(f‚Íã‚É“Ê).
@f '(y) < f '(0) = -ƒÄ(2) +2a = -(ƒÎ^2)/6 + 2a.

@(i)@a=1 ‚Ì‚Æ‚« ã‚É“Ê‚Å f(0)=f(1)=0 ‚¾‚©‚ç |x| <1 ‚Å f(x^2)>0.
@(ii)@a…(ƒÎ^2)/12 = 0.82246703c ‚Ì‚Æ‚« f '(0)<0 ˆ f'(x^2)<0, f(x^2)<0.
@ˆ log(1-x^2) -log(1+x^2) < log|sin(ƒÎx)/ƒÎx| < a¥{log(1-x^2) -log(1+x^2)}.
‚Ê‚é‚Û