>58(4)
x>1 に対して f(x) = log{log[(x+1)/(x-1)]} とおくと、
g(x) = exp{f(x)} = log[(x+1)/(x-1)] = -log[(x-1)/(x+1)] = -log[1 -2/(x+1)] > 2/(x+1) > 1/x.
f "(x) = {2/[(1-x^2)g(x)]}^2・[x・g(x)-1] >0 ゆえ f( )は下に凸.
∴ f(x) + f(y) ≧ 2f((x+y)/2).
訂正、スマソ↓
>61(4) ab+bc+ca=t とすると、t≧√(3su).
>62(1) 自然数mに対しては Γ(m+1) = m!
>62(3) tan(θ/2) =t とおくと 0<t<1.