>>419 Σ[i=1 to m]ti=1、ti≧0、p+q=1、p,q>0とする。x^p,x^qは凸関数なので、
0≦(Σ(1/m)(ti)^p)≦(Σti/m)^p=m^(-p)
0≦(Σ(1/m)(ti)^q)≦(Σti/m)^q=m^(-q)
よって、
(Σ(1/m)(ti)^p)(Σ(1/m)(ti)^q)≦m^(-p-q)=1/m
(Σ(ti)^p)(Σ(ti)^q)≦m
等号はti=1/mのとき成立。
ti=ai^(k+l)/Σai^(k+l)、p=k/(k+l)、q=l/(k+l)とおいて示せる。