不等式への招待 第2章

このエントリーをはてなブックマークに追加
329132人目の素数さん
(続き)
^nでn重合成函数を表わせば

【299の一般化】
 cos^(2n)(x) > |sin^n(x)|.
 n≧4 のとき cos^(2n)(x) ≧ cos^(2n)(0) > sin^n(π/2) ≧ |sin^n(x)|.
(補足説明)
 0≦x≦π/2 では cos^(2n)(x) も |sin^n(x)| も単調増加ゆえ
 cos^(2n)(0) ≧ cos^8(0) = 0.722102425026708…
 sin^n(π/2) ≦ sin^4(π/2) = 0.678430477358956…

出題(不等式)
http://messages.yahoo.co.jp/bbs?.mm=GN&action=m&board=1835554&tid=bdpbja1jiteybc0a1k&sid=1835554&mid=233