>>201-203 ありがとうごぜぇます、お代官様。今から読みます。
もう一つ質問。
[前スレ903(3)] 0<x≦π/2 のとき、sin(sin(x))<tanh(x) の解答 [前スレ909] において
> f(y)=arcsin(arcsin(y)), g(y)=arctanh(y)=(1/2)Ln{(1+y)/(1-y)} とおく。arcsin(y)>y より
> f '(y) = 1/√{1-arcsin(y)^2}・1/√(1-y^2) > 1/(1-y^2) = g '(y).
> これと f(0)=0=g(0) から 0<y≦sin(1) ⇒ f(y)>g(y).
f(y)=arcsin(arcsin(y)) の逆関数は sin(sin(x)) になるのですか?