数学基礎論の質問スレッド

このエントリーをはてなブックマークに追加
3334900128
有限の次が有限なのはわかるけどね、それを常に
適用させると有限である自然数を
並べ終わったあとに余る実数なり部分集合なりから、
一対一の矛盾を導く対角線論法がおかしくなるべ。
余った要素に対応する新しい有限である自然数を、
順次作ってけばよくなるから。あれは有限の自然数を無限に
並べる手順が完了したと仮定して導く背理法だからね。
仮に自然数を並べ終えたなら、そのときの最後を考えるべきだしょ。
で、2^n(nは自然数のすべてを動く)の集合を
Aとした場合、Aの部分集合を自然数の2進法表示と同一視すれば、
Aはすべて自然数だから、最後の自然数を抜いたAの総和は
最後の自然数をこえない。だから最後の自然数を抜いたAは
自然数と一対一の対応がつくべ。そうすると最後の自然数を
含んでいるAの部分集合も自然数に対応しるから、Aの冪集合は
可算濃度だべ。
最後の自然数を考えないとしると、2進法と同一視したAの部分集合を
小さい順に並べてったとき、2^Nが自然数であるかぎり
それより小さい要素でできている部分集合はすべて自然数に
対応する。よって、この操作が完了したと仮定すると
この列は全て自然数になる。
でも無限の要素をもつ部分集合は自然数に対応しないので、
背理。