1 :
132人目の素数さん:
理想的なリフトシャッフル:
カードが均等に2組に分かれて、1枚ずつカードが積み重なっていくもの。
リフトシャッフルをすると、カードの配置がどうなるか
考えてみるってことで・・・。
2 :
132人目の素数さん:04/01/08 01:03
分ける時の上と合わせる時の上はいつも同じか?
3 :
132人目の素数さん:04/01/08 01:22
ジョーカーなしだと8回でもどるんだっけ?
5 :
132人目の素数さん:04/01/08 01:28
13*4=52
mod52
糞スレ保守
分けたときの上半分から先に落とし始める場合は「2mod53」の位数、
つまり52回、で元に戻る。
分けたときの下半分から先に落とし始める場合は「2mod51」の位数、
つまり8回、で元に戻る。
8 :
132人目の素数さん:04/01/08 02:03
9 :
132人目の素数さん:04/01/08 02:10
10 :
132人目の素数さん:04/01/08 02:24
1
2,3,5,9,17,33,14,27
4,7,13,25,46,40,28
6,11,21,41,30,8,15,29
10,19,37,22,43,34,16,31
12,23,45,38,24,47,42,32
18,35
20,39,26,51,50,48,44,36
52
11 :
132人目の素数さん:04/01/08 02:35
1,2,4,8,16,32,11,22,44,35,17,34,15,
30,7,14,28,3,6,12,24,48,43,33,13,26,
52,51,49,45,37,21,42,31,9,18,36,19,38,
23,46,39,25,50,47,41,29,5,10,20,40,27,
12 :
132人目の素数さん:04/01/08 02:36
1
1
13 :
132人目の素数さん:04/01/08 02:37
2
1,2,
1
2
14 :
132人目の素数さん:04/01/08 02:40
3
1
2,3,
1,2,
3
15 :
132人目の素数さん:04/01/08 03:19
16 :
132人目の素数さん:04/01/08 12:55
おまいら、リフルシャッフルだぞ
18 :
132人目の素数さん:04/01/08 16:07
糞スレ保守
駄スレ保守
20 :
132人目の素数さん:04/01/08 19:29
駄スレ認定
22 :
132人目の素数さん:04/01/09 17:51
23 :
132人目の素数さん:04/01/12 23:13
24 :
132人目の素数さん:04/01/12 23:37
(1)2n枚のカードをリフトシャッフルしたとき、これを何回繰り返せばもとに戻るか。
(2)3n枚のカードに対して次のようにリフトシャッフルしたとき、これを最低何回繰り返せばもとにもどるか?
1→2n+1
2→n+1
3→1
4→2n+2
・
・
2n-3→n-1
2n-2→3n
2n-1→2n
2n→2n
お願いいたします。m(__)m
25 :
132人目の素数さん:04/01/13 22:23
26 :
132人目の素数さん:04/01/13 22:52
27 :
132人目の素数さん:04/01/16 11:45
もしかして、万が一気がついていない人の為に、
>>10,
>>11は52枚トランプにおけるリフトシャッフルの置換を正確に
現しています。
28 :
132人目の素数さん:04/01/16 11:48
>>12から
>>14は同じ置換を少ない枚数で考えて見てすぐに、
めんどうでやめてしまった事を示しています。
29 :
132人目の素数さん:04/01/16 12:17
ちなみに、
>>7はどうしてそうなるのか、私にはわかりませんが、
凄腕(多分院生、たまにくる。)が出した解で、
>>10,
>>11はその正しさを
示しています。こいつのやり方で
>>24は簡単に解はでるんだろうけど、
俺にはそもそも
>>7の意味がよくわからないので何も言えない。
30 :
132人目の素数さん:04/01/16 20:22
>>29 2^8=256=1(mod51)
2^52=多分1(mod53)
444
32 :
132人目の素数さん:04/02/09 06:21
4
33 :
132人目の素数さん:04/02/20 10:35
age
>>17が書いているように、リフトシャフルではなくて「リフルシャフル(riffle shuffle」です。
余談ですが、リフルシャフルを完璧にやるのは難しいので、それが必要な場合は
フェロウシャフル(faro shuffle)というシャフルを使います。
デックを左手の指先で下から持ち、右手で上半分をとり、左手のパケットと右手の
パケットの短辺を軽く押しつけると、すっと1枚ずつかみ合います。コツが分かれば簡単。
むしろきっちり半分に分ける方が難しいかも。
26枚が1枚ずつかみ合ったものを特に「パーフェクトフェロウシャフル」といいます(そのまんまですね)。
282
2^8=256=1(mod51)
2^52=絶対1(mod53)
37 :
132人目の素数さん:04/04/04 14:31
544
889
375