不等式スレッド

このエントリーをはてなブックマークに追加
167132人目の素数さん
【問題】 0<a<x,y,z<b のとき、
(x+y+z)(1/x + 1/y + 1/z)
の取りうる値の範囲を求めよ。

さくらスレ145
http://science3.2ch.net/test/read.cgi/math/1085311797/465

どんな難しい問題も・・・
http://science3.2ch.net/test/read.cgi/math/1081052206/151
>>167
たしか一般化されたのが、幾つかあったような…
   ___
 ./  ≧ \
 |::::  \ ./ |
 |::::: (● (● | ウーン、ウーン…
 ヽ::::... .ワ....ノ  
1977 USAMO 問5 (解答あり)
http://www.kalva.demon.co.uk/usa/usa77.html

1978 ASU 問13 (解答なし)
http://www.kalva.demon.co.uk/soviet/sov78.html
   ___
 ./  ≧ \
 |::::  \ ./ | この不等式ヲタのコレクションに2つあった。
 |::::: (● (● | ASUの方の模範解答をキボンヌ。 ハァハァ…
 ヽ::::... .ワ....ノ  グッジョブですか?
(下限)
F(x,y,z) = (x+y+z)(1/x+1/y+1/z) = 3 + (x/y+y/x) + (y/z+z/y) + (z/x+x/z)
= 9 + (x/y-2+y/x) + (y/z-2+z/y) + (z/x-2+x/z)
= 9 + {(x-y)^2}/xy + {(y-z)^2}/yz + {(z-x)^2}/zx ≧ 9. (Cauchy)
(上限) x/y+y/x はx/y=1のとき最小で、両側でx/yに関して単調。すなわち、1から遠ざかるほど増加する。
a<x≦y≦z<bとすると、
F(x,y,z) ≦ F(a,y,b) = 3 + (a/y+y/a) + (y/b+b/y) + (b/a+a/b)
= 3 + (b/a+a/b) + {(a+b)/ab}(y+ab/y) = 1 + (b/a+2+a/b) + {(a+b)/ab}{a+b-(b-y)(y-a)/y}
≦ 1 + (b+a)^2/ab + {(a+b)^2}/ab = 1 + 2{(b+a)^2}/ab.
   ___
 ./  ≧ \
 |::::  \ ./ |
 |::::: (● (● | みんな グッジョブ!
 ヽ::::... .ワ....ノ    n  
 ̄ ̄   \    ( E)
フ     /ヽ ヽ_//