くだらねぇ問題はここへ書け ver.3.14(25桁略)2795

このエントリーをはてなブックマークに追加
929132人目の素数さん
三角比の基本的な問題ですが、解き方を教えてください。
かみくだきでお願いいたします。

【問題1】
BC=6, 角B=30° 角C=45°の三角形である。
頂点Aより対辺BCに下ろした垂直線の長さhを求めよ。

【問題2】
角A=45°,角C=90°の直角三角形ABCがある。
また、点Dは辺AC上にあり、AD=1 角D=60°である。
このとき、辺BCの長さを求めよ。

参考書などで似たような問題をやってみたんですが、
与えられた条件が微妙に違くて、この2問が解けませんでした。
どうかよろしくお願いします。
930132人目の素数さん:04/01/02 06:10
>>929
問題1

垂線の足をHとすると、三角形AHCは角AHC=角Rの直角三角形なので、
角DAC=90°−角C=45°で、三角形AHCはAH=CHの直角二等辺三角形。
∴AH=CH=h・・・@
また、BH=BC−CH・・・A
三角形ABHについてtan角B(=30°)=AH/BC・・・B
@、AをBに代入して、tan30°=h/(6−h)・・・C
hの方程式Cを解けばよい。


問題2
角Dとは角BDCのことか?

角Bは45°なので、三角形ABCはBC=ACである二等辺三角形。
BC=Xとおくと、DC=AC−AD=X−1
三角形DBCについて、tan角D=X/(X―1)(=BC/DC)・・・D
Xの方程式Dを解けばよい。