これって本当にオリジナル公式?

このエントリーをはてなブックマークに追加
35132人目の素数さん:03/07/22 13:32
何でロピタルの公式ってダメなのかわからん。

ロピタルの微分の本って、ベルヌーイ兄弟の指導の元に
世界で初めて出版された微分の本だろ?
それの最終章にきちんと載っている公式がなぜ
高校で使えないのかわからん。

微分積分学の基本定理の方が歴史的には古いだろ。
それを当たり前のように教えてるくせに。
ロピタルの定理なんて自明だろ。
36:03/07/22 13:36
「いろいろな公式変形マニュアル」
良いHP発見しました。ご覧下さい。
ttp://www.ne.jp/asahi/yama/april/
他の板にも貼って他の人にも教えてあげて下さい。
ロピタルって黄チャートに載ってるのにだめなのか?
3828:03/07/22 21:39
>>34
というのは?とはどういう意味?
39132人目の素数さん:03/07/23 18:56
ここはロピタル厨隔離スレですか?
40132人目の素数さん:03/07/23 22:16
>>21
十分条件だろ
41132人目の素数さん:03/07/24 12:13
>>28
> おれとは考え方が違うみたいだな。
> おれは問題が解ければそれでいいと思っている。
>
> 小学校のテストで、鶴亀算の問題が出てきたとして、
> それを連立方程式で解いたからとバツをつけるような教師は嫌いだ。

はげどう。
それが嫌だったら問題文に鶴亀算で解けって書けってんだ馬鹿野郎。くそ教師め。
42132人目の素数さん:03/07/24 12:31
いや、ロピタルが大学入試で使えないって言ってるのは
高校数学でロピタルを使うと計算問題で難しい問題がなくなるんですよ。
それよりもロピタルを使わずに、とく力をつけてもっと難解な問題を
解けるようにするのがテーマだからです。問題のスローガンをむししなければ
基本的に大学ででるような公式でも使ってもかまいません。ロピタルも問題に
よっては使ってもかまいません。
>>23
高レベル入試で平均値を使わない人はいません。(たとえ指導要領をはずれてようが
難関大学入試では知ってて使えてあたり前です)
43132人目の素数さん:03/07/24 14:40
漸近展開を学べば、ロピタルの定理は必要なくなる。(そればかりかロピタル
ではだめだったり見通しが悪い問題も楽に解ける。)

漸近展開までいかなくても、テーラー展開でかなり十分。
高校でロピタル使う使わない議論するくらいなら、テーラー展開使う使わない
議論しる!
国立後期はテーラー展開の嵐だな。
模試でロピタル使ったら○くれたよ?
46132人目の素数さん:03/07/25 06:52
>>45
mo氏の祭典はdqnかもしれない大学の1年生がすることもある。
事前に際天基準の説明会はもちろんあるが守らない。
というより守れない。
解答者の作成した答案の正否がわからん際転写もいると思われ。
47132人目の素数さん:03/07/25 07:00
たとえば五十歳くらいの人間が大学入試を受けようと思ったとする。
彼は30年近く前に一回理科系の大学を通過しているとする。
数学には自信があるので受験勉強なしで受けようとしたとする。
もちろん彼は現在の指導要領なんて知らない。
彼は入試本番で範囲外の事実をそうとは知らずに使った。
採点官には答案作成者が十八歳か五十歳かなんて分かるはずもない。
さあ、この不公平はどうする?
五十歳の彼はいくら数学に自信があっても
受験前に指導要領を調べつくさねばならないのだろうか。
48132人目の素数さん:03/07/25 07:15
寝言をいうでない
49_:03/07/25 07:17
>>47
普通は受験する時点で、別の試験が用意される。
51132人目の素数さん:03/07/25 11:14
テーラー展開知ってますけど、それをどう使えばロピタルの代わりになるんですか?
>>51
分子分母を適当な次数まで展開すればよい。
ロピタルより詳しい情報が得られるよ。
54132人目の素数さん:03/07/25 12:12
>>33は何か誤解していると思われ
ていうか馬鹿
>>54
はげどう。
56ln ◆VENk5mkP7Y :03/07/26 06:24
無限級数をいじってて、こんなの見付けました。
何の役にも立たなさそうだけど、これってオリジナル?

ln(7) = Σ[k = 0, ∞] (-1 / 27)^k * (1 / (6 * k + 1) - 1 / (54 * k + 45)) * 2
57132人目の素数さん:03/07/26 06:38
>>56
多分オリジナルだろうが、たんなるベルヌーイ数の計算に過ぎない。
58132人目の素数さん:03/07/26 07:16
>>57
ベルヌーイ数の解説をお願い.
いやだね。
自分で調べろ。
それが勉強というものだ!
>>54
たしかに。>>33 は数学ってものがわかってない。
へんな思い込みが激しすぎな馬鹿。

>>42>>47もおかしい。受験する側が指導要領の範囲内で解答
しなければならないなどというルールはそもそもどこにもない。
ここまで60のレスで大半がジサクジエンですか・・・
>>58
もし本当に知らないのならば、
いい機会だと思うので、
S(p,n) = Σ[k=1,p] k^n
({p,n|正の整数})
を計算してみるといいですよ。
単なる計算だけど、そこから規則性を見つけてみると、
ベルヌーイ数(に近いの)が見て取れるはず。

求める時には、「連続するmこの積は〜」系の和から、
(n=3の時に、使ったやつ)
63132人目の素数さん:03/07/28 08:50
>>51
ロピタルとテーラー展開のつながりに気付かないやつもいるんだな。
普通気付くだろ。ってか気付けよ!
>>63
ごめんよ〜
>>63
気づきませんが説明お願いします
そうだな。
lim (1-cos^2x)/sin^2x の分母と分子を別々にテーラー展開してみれば?
x→0
67132人目の素数さん:03/07/28 09:30
実は答えられない罠
     。。  
   。     。 +   ヽヽ
゜ 。・ 。 +゜  。・゚ (;゚`Дフ。< ごめんよぉぉぉ〜、うわぁぁぁん
            ノ( /
              / >      。← 石ころ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
まちがえた。分母は1-cos(x) ね
また間違えた。(1-cos(x))/sin^2x といいたかった。
70132人目の素数さん:03/07/28 09:46
こんな公式作ったんですが、正解しているでしょうか?

(a+b+c+d+e...w+x+y)^2=a^2+b^2+c^2+d^2+e^2+...+w^2+x^2+y^2+2a(b+c+d+e+...+w+x+y)
+2b(c+d+e+...+w+x+y)+2c(d+e+...+w+x+y)+2d(e+...+w+x+y)
+2e(...+w+x+y).....+2w(x+y)+2xy
ちなみに、僕の場合(a+b+c+d...+g+h)^2でこの公式を使ったらちゃんと
この公式どおりになりました。
>>70
あってるべ
7247:03/07/30 02:05
>>60
だから
なにつかってもいいって主張を私はしてるんですが。
伝わってますか?
>>70
{ Σ_[i=1,...,n] a_[i] }^2
= { Σ_[i=1,...,n] (a_[i])^2 } + 2*{ Σ_[1 ≤ i<j ≤ n] a_[i]*a_[j] }
7470:03/07/30 23:41
>>73
高1レベルの数式しか良く分からないから、理解不能・・・。
     ∧_∧  ∧_∧
ピュ.ー (  ・3・) (  ^^ ) <これからも僕たちを応援して下さいね(^^)。
  =〔~∪ ̄ ̄ ̄∪ ̄ ̄〕
  = ◎――――――◎                      山崎渉&ぼるじょあ
76山崎 渉:03/08/15 19:40
    (⌒V⌒)
   │ ^ ^ │<これからも僕を応援して下さいね(^^)。
  ⊂|    |つ
   (_)(_)                      山崎パン
77132人目の素数さん:03/10/10 14:59
「4以上の全ての偶数は2つの素数の和であらわせる」
言数μの儀環δ(μ)によって外数μ'/偶数は定位を持つ。(自明)
線形乖離により轍環はδによる写像σの約値を持つ。
轍環は無限順列を持たない為、輪位は定位と双対ではない。(μ'までも乖離される。)
律価をοとすると言群をMとし、単置換をπとすると、約値が相似単置換π'に相当し
∀{∀(∀σ , ∃π) ,∃π' s.t δμ=φ},∃ ο∈NM s.t δπο∽σπ'μ が言える

これを展開すれば、言数定理によって、乖離され、
δπμ'=φ となる為、補遊値は0になる。
自然数においてδの域数 ω(δ)=2,
πの弄数 Å(π)=2 であり、 ω(δ)Å(π)=4
補遊値=0だから4+0=4。

∴4以上の全ての偶数は2つの素数の和で表せる
78アソコはシンメトリー:03/10/10 18:13
>>77
ゴールドバッハ?
あってるの?
素晴らしい。
80132人目の素数さん:03/10/10 21:37
だれか>>77の説明キボン


荒唐無稽、いや、高等無形すぎて理解不能
( ゜Д゜)ポカーン

∀{∀(∀σ , ∃π) ,∃π' s.t δμ=φ},∃ ο∈NM s.t δπο∽σπ'μ

これがAAにしか見えない
82132人目の素数さん:03/10/11 00:20
エロいひとキボン。
77をみてヤってくらさい。
宇宙語にみえる・・・
8