月下の棋士、大ピンチ!

このエントリーをはてなブックマークに追加
>>793
13x^2-24xy+13y^2=25・・・ア
を原点のまわりに反時計回りにθ回転した方程式を求める。
回転の行列をA(θ)とおくと、(X,Y)=A(θ)(x,y)
よって,(x,y)=A(-θ)(X,Y)
∴x=(cosθ)X+(sinθ)Y,y=(-sinθ)X+(cosθ)Y である。これをアに代入して

(13+24sinθcosθ)X^2+24(sin^2θ-cos^2θ)XY+(13-24sinθcosθ)Y^2=25・・・イ

イが,アを原点のまわりに反時計回りにθ回転した方程式である。
ここで,θ=π/4 とすると,
イ⇔25x^2+y^2=25⇔x^2+(y/5)^2=1
これは,楕円の方程式である。
したがって,求めるべき点は,(0,±5)を原点のまわりに反時計回りに-π/4回転した
座標だから,(±(5√2)/2,±(5√2)/2)(複号同順)・・・答