1 :
大学への名無しさん:
3 :
大学への名無しさん:2009/11/18(水) 15:09:50 ID:ex5O6n8DO
>>1 乙
まさか採用してくれるとは思わなんだ
是が非でも合格しないと
5 :
大学への名無しさん:2009/11/18(水) 20:33:18 ID:cth+CQuV0
天は人の上に人をつくり人の下に人をつくる。生まれが豊かなれば労せずして人の上となり親が貧なれば人の下となる。
ゆえに慶応は門閥・ゼニ・コネをもって至高の価値となす。門閥は親の仇と言ふはもってのほかなり。
貧乏人と朝鮮人はくたばってしまえ。
<Y吉門下
6 :
大学への名無しさん:2009/11/18(水) 22:55:04 ID:ex5O6n8DO
勉強の合間に研究の問題数調べたら、
TA:例題140題 章末123題
UB:例題203題 章末 96題
ってな感じでUBの方が章末問題の量少ないんだな。
意外だ
問題数の話が出たのでついでに俺が調べた問題数も貼っておく。
左から順番に、黒例題、赤例題、章末A、章末B どす。
黒 赤 A B
TA 94 46 83 40
UB 132 71 52 44
VC 84 04 41 33
8 :
大学への名無しさん:2009/11/19(木) 01:13:01 ID:LFrBUhTY0
放送大学を退職したけど、この人はもう受験業界で授業はしないのかな?
検索してみたら早稲田アカデミーで教えてるみたいだね。
>>10 情報ありがとう。何で駿台に復帰しないんだろう。
12 :
大学への名無しさん:2009/11/19(木) 02:00:43 ID:iIelxSNe0
スレタイかえたのか。
13 :
大学への名無しさん:2009/11/19(木) 10:41:17 ID:gY0X3jfbO
駿台は脱税 河合は創価 代ゼミは亀田
亀田?(笑)
15 :
大学への名無しさん:2009/11/19(木) 12:41:01 ID:L8qCQfsO0
はーろーげん
16 :
スレタイ:2009/11/19(木) 13:38:27 ID:eWyjdBkWP
【本質の研究】長岡亮介の参考書スレ2【黒大数】
研究で検索すること多いし、大数だと過去スレみたいに東京出版のと
間違える人多いから次スレはこの方が良いと思う
17 :
大学への名無しさん:2009/11/19(木) 14:51:00 ID:gY0X3jfbO
いや だから研究だけじゃないでしょ〜が
もう お馬鹿さんね〜 セックス ラタ ペニソニカ
そうだけど「研究」が入ってる分、検索ヒットしやすいでしょ。
そんなこと言ったら「本質だけじゃないでしょ」とかキリがなくなる
19 :
大学への名無しさん:2009/11/19(木) 15:09:10 ID:S/GKIGO80
【本質・黒大数・極選】長岡亮介 総合スレ【研究・解法・演習】
んじゃ次はこれでいこうぜ
20 :
大学への名無しさん:2009/11/19(木) 15:17:04 ID:iIelxSNe0
確かに研究とは入ってたほうが良かったね。
21 :
大学への名無しさん:2009/11/19(木) 15:21:08 ID:BNWfUWH70
まあこのスレはこのスレで良いんじゃない。
毎回スレタイ変わってる事だし。
次スレは研究を入れれば良いよ。
研究使用者は理系が多い気がするけど文系で使ってる人がいたらレスしてほしい
23 :
大学への名無しさん:2009/11/19(木) 15:44:10 ID:s2I8a88A0
宣伝かよ
この本売れてないでしょ。本屋で見た時もたしか、最後のページみたら重版だった。
前の書名から今の書名に変わったことでの重版なんで、実質二版にもいってないほどの売れ行きと思うが。
25 :
大学への名無しさん:2009/11/19(木) 18:14:25 ID:DXMvBTKC0
早稲田アカデミーの台頭か
ライブ講座と音声講義もあるな
27 :
大学への名無しさん:2009/11/19(木) 23:50:53 ID:SrJl4yEE0
>>22 ノ文系
一通り研究終わったんで二週目入るか解法行くか極選行くか悩んでるわー
>>27 極選をすすめるよ
僕は文系プラチカと極選実戦・発展を併用してる
答えたくなかったら構わないんだけど東大志望?
29 :
大学への名無しさん:2009/11/20(金) 00:32:56 ID:tFR9K0LK0
>>28 京大志望だよ
基礎の再確認と思考力強化を図るために研究シリーズやってる感じ
解法のCORE方式にも興味あったんだけどやっぱ研究と併せると無駄も多いよね
大人しく極選にしとくよ、ありがと
30 :
大学への名無しさん:2009/11/20(金) 00:35:51 ID:xX0C6utQ0
分かり易い問題だけを選別しているから分かり易いんだね
標問がない・・・
990 名前:大学への名無しさん [sage] 投稿日:2009/11/17(火) 21:33:58 ID:mpncdqLUP
・極選発展編
・大学への数学スペシャル
・ハイレベル精選問題演習
・文系プラチカ
・やさしい理系数学
・ハイレベル理系数学
・医学部攻略の数学
・理系標準問題集数学
・お医者さんになろう医学部への数学
・壁を超える数学
・最難関大への数学
・国公立大理系学部への数学
研究・解法の後に使うアウトプット用問題集はこれらが良いと思う。
章末問題Bよりやや難しめで、なおかつ研究の穴を埋めつつ応用力が付く問題
に絞って演習できるから。
32 :
大学への名無しさん:2009/11/20(金) 12:55:45 ID:NE0NV9MzO
>>31 標問の難易度って研究での黒例題〜章末AとBの間レベルじゃない?
とてもじゃないけど章末B以上の難易度とは思えなかったけど
本質の解法を終えたら1対1対応に直接いって大丈夫ですか?
34 :
大学への名無しさん:2009/11/21(土) 02:16:55 ID:stIvaohk0
「これでわかる〜」をやってるのだけれど、一回通しでやったら復習せず
に研究に進んでも大丈夫?
それとも、「これでわかる〜」の問題を解けるようにしてからでないと
研究やっても理解できないかな?
どなたかアドバイスお願いします。
35 :
大学への名無しさん:2009/11/21(土) 02:29:06 ID:eNgCHLmh0
>>34 数学に余程の苦手意識があるならきついかもしれないけど
そうでないなら理解できると思うよ
でも章末は別の単元のところの知識とを合わせてじゃないと解けない問題がいくつかあるから
本文&例題やって章末は一旦飛ばし、最後の単元までやったら飛ばしてきた章末をやると良いかも
36 :
大学への名無しさん:2009/11/21(土) 03:29:34 ID:stIvaohk0
37 :
大学への名無しさん:2009/11/21(土) 05:41:42 ID:sUWPzNK0O
>>22 ノ
東大志望だけど数学は駄目すぎます^^
夏休み前はセンター模試で30もいかなかったのに、今回の模試では1A、2Bともに八割ほど取れた、ありがとう研究
おお凄いじゃん
40 :
大学への名無しさん:2009/11/21(土) 23:08:52 ID:fGe2377SO
研究と4stepは相性良いよね
えっ
研究を教科書
4stepを教科書傍用にするという事か
43 :
大学への名無しさん:2009/11/22(日) 05:53:21 ID:QF85RuWMO
極選4冊≒やさ理と聞いたが、どうなの?
確かに問題数はそんなもんだけどさ。
44 :
大学への名無しさん:2009/11/23(月) 18:56:09 ID:8wlTIpBuO
実践と発展との難易度差って結構ある?
45 :
高2:2009/11/24(火) 21:06:39 ID:HJushcIOO
本質の解法の章末問題と阿由葉文系頻出を平行して終わらせたー
章末の質の良さには興奮した。
今の俺には極選実践は簡単過ぎた。これからプラチカやるぜぇぇぇ
47 :
大学への名無しさん:2009/11/25(水) 22:03:03 ID:ZtcjRpYpO
研究終えた後だと京大の難易度Bの問題でも結構解けるようになった、これは嬉しいなぁ
凄いな
49 :
大学への名無しさん:2009/11/26(木) 06:15:06 ID:kzAd0gM1O
さすがに普通の人間には不可能
複素数、数列や確率などの整数問題なんかの分野は、研究だけじゃ無理があると思うけど、その他の分野に関しては、研究の後に赤本でも大丈夫だと思うぞ。
まぁ間に一つ問題集を挟んだほうが無難だとは思うけど。
それまでにやってきたことが人によって違うのにそんなこと言っても仕方がない。くだらない。
限りなく真実に近い思考停止だな
【学年】再受験
【学校レベル】旧帝法学部卒
【偏差値】全統マーク1A100/2B80/全統記述60
【志望校】旧帝医学科
【相談したいこと】
来年2月から勉強を始める予定でしたが、仕事の関係で幸運にも10月からスタートすることが出来ました。
本質の研究を一通り終わらせたので、次にどうするかを考えています。考えとしては、
@ひたすら過去問(第1から第3志望くらいまで)
A研究と同レベル、かつ400題くらいの入試の標準的な問題集(一対一や標問)+過去問(第1志望のみ)
B研究よりレベルの高い、かつ問題数の少ない問題集(医学部攻略の数学など)+過去問(第1志望のみ)
いずれの場合も、研究の復習は当然やっていきます(@ならその割合を大きくします)。
正直、今年度で受かるとは思いませんが、受かるような勉強をしたいと思います。
そこで、みなさんならどうするかをお尋ねしたいです。
アンケートの様になるかとは思いますが、周囲に相談することも出来ませんので、このスレの皆さんにお尋ねする次第です。
既に受かられた方の経験談でも、同志の方のこれからの予定でも構いません。
この四捨五入して三十路のオッサンめにご教示願います。
旧帝法と言っても文Tから北大九大法まであるんだからちゃんと言おうよ
55 :
大学への名無しさん:2009/11/30(月) 06:41:40 ID:4zM76TGZO
>>53 まぁBだろ
志望校でなくても東大、京大の25ヵ年をひたすら解くという手もありかも
A。研究の手応え次第でもあるけど、1対1より標問かスタ演がお勧め。
レベルが被ってるだの言う声もあるけど、そりゃ入試標準レベルは被るぐらい演習しないとなw
57 :
大学への名無しさん:2009/11/30(月) 16:02:04 ID:4zM76TGZO
本質ですむことをわざわざ重複させて無駄な労力を費やして、馬鹿だねぇ
研究で何が済んでるのか判らんが、「無駄だ」と思う人はそれでも可。
社会人で、生涯学習と数学検定対策本の代わりに本質の講義聴いてんだが、テレビのくだらないバラエティー番組なんかより余程おもしれぇwww
さらに本質の研究も読みまくってるんだが、飽きたらんので勢い余って放送大学に願書出してきた。
Aとか無駄多すぎだろ
1対1とか研究やってたらやる価値あんまないよ
研究やったあとに見るとほとんどただのテクニック本にしか
感じないし
研究の復習しながら、Bがいいと思う
61 :
53:2009/12/01(火) 01:14:34 ID:HQo7ln+10
たくさんのレス、ありがとうございます。
研究で出来ることは研究でというご意見も、頻出問題はやり過ぎてもよいというご意見も、ともに説得力が感じられます。
>>55さん
ありがとうございます。
25ヵ年は頭に無かったです。しかし、偏差値から考えてもこなせそうにありません…
>>56さん
ありがとうございます。
私は昔から大数が苦手なので、やるなら標問にするつもりです。
>>60さん
ありがとうございます。
>>研究やったあとに見るとほとんどただのテクニック本にしか感じないし
そうですね。私も昔の1対1にもそれを感じて、途中で放り投げた記憶があります。
まだまだ迷いますが、とりあえず明日、標問と医学部攻略の数学を買ってきます。
10題くらいずつ軽くやってみて、Bが行けそうならBで、無理そうならAで。
みなさん、構ってくださって本当にありがとうございました。
安田亨のセンスをみがく良問もいいよ(1Aのみだが)
天空への理系数学、医学部良問セレクトあたりもお勧め
(これらは解説というより問題の選定がいい)
25ヵ年はさすがにキツイだろうけど、研究のあとは、
東大京大その他旧帝大の問題の中で標準的な問題をやるのが
ちょうどいいと思う
ひとつの大学に絞るのなら、例えば入試標準くらいの難易度なのが広大
広大の問題で7〜8割とれるかどうかが基礎があるかの目安になる
もう少し難易度高めで良問を解きたいのなら東北大がお勧め
再受験で旧帝ということは九大かな?
その場合、九大の問題をひたすら解いていくのもあり。
時間がないので、問題数少なめのもの(さきほど挙げたものなど)で
センター前までに確率、ベクトル、微積、行列あたりの頻出分野を
終わらせておいて、センター後から模試問題集をやるというのもあり。
でも、理科が完成してないと今年は厳しいかな。
そのレベルだと九大でも3完できたらいいほうだろうし、そうなると
必然的に理科で高得点が必要。
長岡スレなんだから極選を薦めるレスがひとつくらいあってもいいと思うんだ
66 :
大学への名無しさん:2009/12/02(水) 02:55:14 ID:TGj/oeZnO
俺的には学研の精選とか数学を決める論証力とかマスターオブ系とかをやりつつ月刊大数がいいと思う
67 :
大学への名無しさん:2009/12/02(水) 02:56:28 ID:TGj/oeZnO
って今年かよ 無理だろ
69 :
大学への名無しさん:2009/12/03(木) 07:12:16 ID:Y3IxXbIMO
スマン底力だったわ精選じゃなくて
ああいった考える系は良いよ
70 :
大学への名無しさん:2009/12/07(月) 14:19:09 ID:0iO+trnqO
長岡の本は普通だね。
>>70 お前その一言作文の癖直せって。いちいちつまらないことを書き込まなくていいよ
72 :
大学への名無しさん:2009/12/07(月) 23:56:42 ID:ovdpXUV60
本質の研究2B のP236 の 例題89 (ベクトル) (2)の問題の趣旨をアプローチ読んでも理解できませんでした。
どなたか解説お願いします
73 :
大学への名無しさん:2009/12/08(火) 00:41:39 ID:8WM+1rX5O
>>70 全く普通じゃないよ。
研究は教科書を詳しくしたような珍しい参考書だし、
解法&演習は問題数を絞った網羅系だし、
講義は教科書に何故かCDをつけたパソコン必須の面倒くさい本だし、
ライブもパソコン使わないといけないし、
最高峰は模試の難問を集めた珍書だし、
極選は詳しいけど問題数の割に高くて余白ばっかり目立つし、
黒大数という言葉自体数学スレでは死語になりつつあるし…
合う人にはいいんじゃない?
74 :
大学への名無しさん:2009/12/08(火) 21:08:09 ID:k/v0vZ1/O
本質の解法3Cの練習641でなんでFxは減少するのにFx>0になるの?教えてください。
75 :
貴:2009/12/10(木) 00:59:18 ID:LAZIWexX0
遅レスごめん。
x<0のときは、f'(x)<0だよね。
ってことは、f'(x)はf(x)の傾きをあらわしているわけだから、
x<0のとき、(x)のグラフは右肩下がりなわけだ。
で、f(0)=0だから、このグラフは
x<0のときはf(x)>0で、x→0のときf(x)→0になるわけだ。
右肩下がりってことは逆に言えば、x<0である限り、
f(x)>0でありつづけるわけだ。
(グラフで言うと第2象限にしか存在しない、原点に向かう右肩下がりのグラフを想像してもらえればいいかな。
変曲点とか、細かいのは今は抜きにして……)
僕はそんな風に解釈したけどな・・・・・・
なにこの人・・
77 :
貴:2009/12/10(木) 13:46:34 ID:LAZIWexX0
78 :
大学への名無しさん:2009/12/11(金) 13:08:56 ID:WX4bWVstO
スレチだが解説してくれてありがとう。
79 :
大学への名無しさん:2009/12/11(金) 14:55:52 ID:GRqBBjEt0
75=77は変曲点とか言ってるから、74へのレスだと思われ
80 :
大学への名無しさん:2009/12/12(土) 17:41:18 ID:cXE3xDYKO
>>73 数研教科書と青チャートのほうがよかったです。
ありがとうございました。
↑いつもいつも自演お疲れ様です。自演するお気持ちとはいかがなものなのでしょうか?
82 :
大学への名無しさん:2009/12/12(土) 20:25:18 ID:9QQg5h3PO
よくあること
83 :
大学への名無しさん:2009/12/13(日) 23:10:51 ID:uFodNBSjO
長岡の本で駄作は駿台最高峰くらい?
それ以外はあまり悪評聞かないが。
堅実な構成だからな
特別突出してるわけじゃないけど人を選ばない
最高峰は駄作というより難易度が高すぎて使用不可能という感じかな
解説の研究欄が充実してるところは良いんだけどね
敢えて言うと本質の演習の対象が絞りきれてないところかな
初学者が使うには不親切な面もあるし、かといってレベルは低めだし…
本質の講義出た今じゃその役目を終えたかもしれないね
そうなんだ。
数学ライブ講座と聞いてしまえばとっても〜はCDの内容被ってますか?
両方買われた方いますか?
88 :
大学への名無しさん:2009/12/14(月) 17:17:22 ID:nN0+ymml0
本質の講義値段上げていいから台本にしてくれないかな。
CDだと面倒
長岡なら知ってるけど、優秀とは言えなくて、
小賢しいというのがあたってるかな。
性格は問題が多くて、これは弟も同じ。
90 :
大学への名無しさん:2009/12/14(月) 20:59:20 ID:RK+dVvQT0
最高峰は駿台模試の過去問を使っていると記載してあるけど
全国模試を使っているのか、東大模試を使っているのか気になる。
本質の研究2Bを使って勉強していますがたまに理解できない部分があります。
たとえばP204の上のほうに書いてある「g(x,y)=0の表す曲線、h(x,y)=0の表す曲線をあわせたものが曲線F(x、y)になる」
こういうのはどうしたら完璧に理解できるのでしょうか。それとも本質の研究1Aから始めないと理解しにくいですか?
>>91 最初はイメージできたらいいんでない?
問題を解いていく中で理解できるかもしれんし、
しばらくたって読み返したらわかるかもしれないし(個人的な意見だけど
93 :
大学への名無しさん:2009/12/15(火) 03:02:52 ID:mK3RwE8LO
奇人変人
95 :
大学への名無しさん:2009/12/15(火) 03:50:06 ID:88p/dBGBQ
解法と研究どちらにしようか迷ってるからアドバイスくれないだろうか
特徴や問題のレベル、網羅度など
>89
俺も本質の講義のCD聞いててそう思ったw
やたら難しい言葉を使ってて語彙力がないおれは・・・ry
>95
解法は計算力ないと辛いと思う
研究は読解力ないと辛いと思う
講義は集中力ないと辛いと思う
解法+講義のセットがオススメ
97 :
大学への名無しさん:2009/12/15(火) 14:25:48 ID:88p/dBGBQ
解法で行きます
ありがとうございます
文系ですが研究の後の問題演習書は何がいいでしょうか?
解法に癖がなく、かといって文系には不要な高尚すぎる解説も
ない方がいいです。
100 :
大学への名無しさん:2009/12/16(水) 21:49:41 ID:o/s5E+YUO
なんとなく本質の研究って使いにくい問題集だなー 青チャに慣れているとなかなかこの形式に慣れない
この人の授業受けていたけど、面白かったな
受験終わるまで、何度も何度もこの人のノート見なおしたよ
駿台だったってこともあるけど、1年間通してプリント2回しか配らなかったし
2回くらい教え子の理3医師○口さんが代講にきたっけ
計算間違えは結構あったけど、それ以上に教え方に情熱があって
浪人時代、いつも感化された
この人がいたから、今の自分がいるといっても過言じゃないな
信じられないかもしれないけど、英頻の伊藤和夫や奥井潔、山本義孝、三国、小倉(敬称略)
今じゃ代ゼミにいる仲本、今井、西岡など東大理系Sのメンバーは凄かった
102 :
大学への名無しさん:2009/12/17(木) 21:39:54 ID:/xrsapjlO
なんで煽るんだ?意味が分からない・・・
104 :
大学への名無しさん:2009/12/18(金) 04:50:06 ID:lic+Bev3O
クズの煽り位スルーしろよ
>>102 >>101だが、30代のオッサンです(笑)
伊藤和夫が亡くなる最後の東理SのE組にいたけど、
あの人夏に倒れて手術したのに、冬にまた教壇に立つつもりだったみたい
長岡亮先生の名前をググったところ、このスレにたどり着いた
昔話すまないね
別に煽りってほどのものでもないだろ
繊細な奴多いのな
108 :
大学への名無しさん:2009/12/19(土) 20:12:49 ID:aOkPzZt3O
本質の研究になじみにくいと思ったら教科書なのね、これ
解法や演習とは違うからやりにくいのかな
109 :
大学への名無しさん:2009/12/20(日) 06:58:24 ID:bqqrUgV/O
将来は師の藤田宏先生に代わり、理解しやすい数学を執筆してほしい。
110 :
大学への名無しさん:2009/12/20(日) 10:03:56 ID:w7EwzUt2O
弟の授業受けたら偏差値急上昇した
111 :
大学への名無しさん:2009/12/21(月) 00:11:41 ID:hoBhrP5NO
東進工作員は帰れ
59で長岡の本マンセーした者だけど、個人的な感想なんだが、本質の研究って、これこそ文系向きの本なんじゃないだろうか。
やさしいわけじゃ決してないけど、解説読んでて先を読みたくなることしばしば。
この本が現役の頃にあれば、オレの大学受験もだいぶ様変わりしたんじゃないかと思うオレも、伊藤和夫御大の本で勉強した30のおさーん。
いいんじゃないだろうか?
ただ、もっと深く勉強したいなら、SEGの教科書みたいなのが必要だな。
研究は黒大数や旧SEG出版の本に比べると敷居を低くして文系でも使いやすく
してる気がするね
研究UBの559ページのアプローチのところに
「----, 次数がわかれば次定されます.」
って書いてあるけど、
「次定」って用語は一般的?それとも単なるミスプリかな
ミスじゃないの?「決定」って書きたかったのかな?
別に、本質の研究を悪くいいたいわけじゃないけど、大学教授が、高校生用の参考書を書くのって、ようするに、
専門の本出すより、細かいことはオブラートに包んでパターン網羅しただけの高校生用の本書いた方が、楽だし儲かるからだろ?
本人は売れることを無視して書いたと言っているけど
普通の大学教授が書く本は小遣いかせぎ、それも単なる名義貸し
だったりするけど、長岡先生は元々駿台講師で当時から受験参考書出してた
みたいなのでその延長じゃない?
旺文社のライブ講座か何かの紹介ページに編集者が受験生時代長岡先生に
お世話になり、今その先生の本作りに携われて光栄ですとか書いてて希ガス
>>24 亀だけど旺文社の版のシステムは他の会社と違うよ。
122 :
大学への名無しさん:2010/01/04(月) 23:59:58 ID:BYTSIlOy0
age
本質の研究と黒大数ってどっちがよく出来てる?
どちらも良く出来ているけど基礎の導入に関しては本質の研究が、高校範囲外
含む発展事項の解説と演習問題に関しては黒大数が優れているかな
入門者は本質の講義、中級者は本質の研究、上級者は黒大数選べば問題ないと思う
125 :
大学への名無しさん:2010/01/08(金) 21:40:59 ID:HUJ6aW7r0
現在高1で東大文三志望なんですけど、数学が極端に悪いので(河合全統で55、駿台全国に至っては50以下)
担任に「本質の研究」をすすめられ、購入しました。
しかし、買った後にある大学受験参考サイトで「数学中級理系編」というところに分類されており、
メイン本ではなく理解補足本と紹介されているのを見て「あちゃー」と思った次第です。
そこで質問です。
(1)文系ですけど問題ないですよね?
(2)一日に§1〜2読んで、黄チャで類題探して解いてみるってやり方でIAを一カ月強で終わらせる予定ですが、
この偏差値で実行しても大丈夫でしょうか?もっとOOした方がいい、とかありますか?
【現在の学習状況と勉強法】
・事情がありこれまで独習、これからも独習。(ただし担任が手伝ってくれる。)
・I・Aは既習。ただし教科書章末レベルでさえおぼつかないところもわずかだがある。
・教科書→黄チャで漫然とやっていた。どうしてもマンネリ化にうんざりしてしまい、最近は勉強時間も下降気味。
【今後の計画と目指すところ】
・本質の研究I・Aと黄チャ→U・B教科書→本質のU・Bと黄チャ→一対一I・A&U・Bとマスターオブ系
→文系数学良問プラチカ→対策本や過去問
・どうせ受験であと二年以上やるんだから、好きな教科に、あわよくば得意な教科にしたい。
長文で申し訳ありませんが、回答していただけたらうれしいです。
>>125 君は、なんでそんなに情報に流されやすいの?
とりあえずプラン厨乙
というか文三ならそんなに数学に力入れなくてもいいんじゃないかなぁ
合格者平均も一完半ぐらいじゃないの?英国頑張った方が受かるとお毛よ
129 :
大学への名無しさん:2010/01/08(金) 23:16:01 ID:HUJ6aW7r0
>>126 確かにそうですね。
数学は不安だからだと思います。実際、英国は流されることなく決めたことをやっています。
>>127 そう言われるのも無理ないですね。実際、俺こんなに長文書いてたんだって思うと数時間前の自分がちょっと恥ずかしい
>>128 そうですかね?
こいつホントどうしようもないんw
194 名前:大学への名無しさん [] 投稿日:2010/01/08(金) 23:09:23 ID:HUJ6aW7r0
東大文三志望だけどビジュアルT→基礎英文問題精講→ビジュアルU→テーマ別→・・・
テーマ別の後はもう読解系・長文系は必要ないでおk?
過去問とか演習(英作文とか和訳とか要旨大意とか)でいいよね?
131 :
大学への名無しさん:2010/01/08(金) 23:19:40 ID:HUJ6aW7r0
>>130 ばれたw
でも、実際英語はもうそこまで終わってるよ
数学はプラン厨だと笑われても仕方ない。
>大学受験参考サイトで「数学中級理系編」というところに分類されており
どうせニムセルのサイトだろ。
ニムセル本人は使ってもいないのに理解補足本もクソもあるかよ。あんなアフィリエイト貼りまくりの所信用するな。
133 :
大学への名無しさん:2010/01/08(金) 23:29:01 ID:HUJ6aW7r0
>>132 そうです、そこです。
信用しちゃいけない感じのところでしたか。・・・
自分のメディア・リテラシーの欠如を反省します。
134 :
371:2010/01/09(土) 02:01:54 ID:JIudpE3X0
>>125 人それぞれだけど、研究は使い方で未学者でも十分いけると思う。
ただし1回読んだだけでは効果は出ない、ふつうは。
未学者なら端まで(研究の欄とか、赤練習問題とか)は読まず、定理の説明や、なぜそうなるかぐらいを読み進めたらいい。
そして範囲のところを研究片手に基礎問の例題と精講を読んで、基本的な問題の種類とアプローチを覚えればいい。
いいか、ここからだ……
そのあとにまた研究を、これでもかと思うほどねちっこく読むんだ。このときは1回目に読んだ研究と基礎問でやったことがなんとなく繋がってる感じだから、
この2回目の研究の精読で、それこそ端々まで一言一句もらさず読む。
童貞を捨てたときのHはアナルなんぞ攻めも舐めもせんが、早かったら2回目にはやりたくなるだろ。あれと同じようなものだ。
普通に集中したら、例えば1・Aなんかは8単元だから、8日で終わる。
そしたら、「なんとなく」が「がっちりスクラム」になるよ。
そうなったら赤例題とか章末Aは完璧になるし、章末bもほとんど1発でいけるし、あやふやな間違いはしない。
研究てのは3,4回ぐらいまでなら読むたびに新しい発見や深みを感じられる本だと思う。。
そのあとは何でも好きなのをすれば?
135 :
大学への名無しさん:2010/01/12(火) 08:57:00 ID:H+69H2MM0
本質の研究の集合と論理とか確率のところは全然わからんかったわ。
これは本質の講義を買えということですねわかります。
136 :
大学への名無しさん:2010/01/19(火) 00:34:31 ID:oQbzto10O
駅弁医学部志望です。
去年の秋から研究を軸にして、わかりにくいとこは坂田で代用してるんですが効率悪いでしょうか?
あと二周くらいやるつもりだけど、章末Bが一対一と結構被ってるから繋ぐ問題集に悩みます
標準問題を確実に取るためには無駄ではないとも思うのですが、ここだとイマイチ評判悪いので
すごい既出な質問ですが研究からの繋ぎの問題集でオススメあればご教授願います
極選やれよ
138 :
大学への名無しさん:2010/01/19(火) 18:52:22 ID:6n0+Zu5t0
2003年初版、2006年重版の本質の解法があるんですが
今年以降の受験に使用できますか?
マルチすみません
初版、重版の意味が分かってないよね。
140 :
大学への名無しさん:2010/01/28(木) 22:55:06 ID:IV4zJnLq0
age
142 :
大学への名無しさん:2010/01/30(土) 19:50:33 ID:9SAuAfhS0
過疎ってんな
143 :
大学への名無しさん:2010/01/30(土) 21:37:43 ID:m3/3F+PKO
馬鹿な質問ばっかだし、そら過疎るだろうよ
144 :
大学への名無しさん:2010/01/31(日) 11:09:27 ID:mcd3oVdA0
極選ってどういう位置付け?
tes
数学読本やったことのある人いる?
ここの住民的にはどういう評価なのよ
研究T・Aやってるんですが
どのくらいで終わりましたか?
くそ過ぎるスレですね
148じゃないけど、T・Aなら一日1章ペースで全問飛ばさずに楽に行けた。
U・Bは単元ごとの量の差が大きいけど、量が多い単元でも、2日に分けたらいける。
でもこれは復習でやってるだけだから、早いのかもしれないけど。
1日3時間はあれば大丈夫じゃないかな?
154 :
大学への名無しさん:2010/02/28(日) 19:40:07 ID:8OSLQ0cr0
本質の解法学校で使ってるの俺だけで不安になる・・ 皆黄チャート青チャートやら
このスレは研究使用者のみですか?
本質の解法は黄チャ青チャよりもわかりやすくていいと思うけどねえ。
解法使用者も多いと思うよ。どっちが多いかは知らんが。
156 :
大学への名無しさん:2010/03/02(火) 21:36:04 ID:KDivxmbm0
>>155 そう、絶対解法の方が分かりやすいと思うんですけどね。
本質の解法+極選実践で駅弁理系は大丈夫ですかね?
157 :
大学への名無しさん:2010/03/03(水) 00:27:51 ID:i2xuI3gt0
黄チャとかと比べて網羅性が無いらしいけど>>本質の解法
網羅性は確かに超重要だが、網羅性に完璧を求めだしたらキリがない。
極論すれば網羅厨は「高校数学解法辞典」でもやってればいい。
重要なのは基本事項を必要十分な計算訓練を通して、身につけていくことだと思う。
その点、青でも黄でも本質の解法でも条件はクリアしている。
あとは好みの問題じゃないかな。
160 :
大学への名無しさん:2010/03/09(火) 15:20:46 ID:GqbjSplL0
本質の研究は!??!?!?!?!?
161 :
大学への名無しさん:2010/03/09(火) 15:31:31 ID:E5i+9SqFO
聞いてしまえばってやつ、頼むからVC出してくれ…
同意。
>>163 要は教科書で教えるのが上手な講師の授業受けているようなものだからね。
初学者には最適なんじゃないか。
研究3Cの積分を物足りないと感じるのは俺だけ?
>>165 あっさりしているというのが定説だったと思う。
>>165 ああやっぱり似たような印象を抱く人は多いのか。
2Bの全分野に渡る骨太な解説と比較すると薄味じゃね?という考えはあながち間違ってなかったわけか。
1対1とかで補強するべきかやっぱし…
長岡先生の数学ライブ講義シリーズって音声講義付きの問題集?
音声講義は基本事項(定理とかの導入)まで掘り下げてるのかな?
とりあえず一冊買ってみることを薦める
なかなかいいよ
研究終わったら解法とか演習とかってやる必要ありますか?
網羅系を持っていないなら解法がおすすめ
TAの研究で質問なんですけど、例題17で「kを整数とする」とありますよね
そこはf(n)について、nに1〜4まで代入したあとにnを'自然数’とおいて、n=5k、5k+1…とするべきではないですか?
整数だとkが負の場合、nが自然数という条件に背きませんか?
もうひとつわからないことがあって、P227の研究1のところで、AC=4を求めるのはなぜですか?
書いてある説明が全くわからないです。
>>172 数学苦手の俺が、夜更かしついでに答えてみる。
まず例題17
kはnに従属するから、整数だろうが何だろうが「nが自然数」って条件を崩すような値は入れられないってことかね。
それにkを自然数としたら、n=1〜4の時はどうすんの?k=0は入れられないよ?
例題86
(1)の@Aやp226のラスト4行の式を満たす解を求めても、それが図形的な量(辺の長さや角の大きさ)として適切とは限らないってことかね?
センターとかでもあるじゃん?
図形問題で二次方程式解いたら正と負の2解が出たけど、求めるのは辺の長さだから負の解は不適、ってヤツ。
まぁこれ以上どう言ったらイイか分かんないから、他の優秀な方を待つべし。
174 :
大学への名無しさん:2010/03/27(土) 14:39:32 ID:4XbcX6Zo0
解法の章末までやったら1対1いらないですか?
本質の研究のV・cしかもっていないんですが、バランスが悪いでしょうか?
やはり、T・Aから読んだほうがいいのでしょうか?
176 :
大学への名無しさん:2010/03/31(水) 16:15:16 ID:0My/ClVH0
教科書は終わったんだがその後に本質の研究はきついかな?
浪人中基礎固めるため研究使ったが今年偏差値70ちょいの某大医学部に受かった
ついでに防医も
研究なかったら無理だったわ
それまで数学の偏差値40〜50だったし(数学だけではないがw)
>>177 どうやって使いました?
あと、章末まで解きました?
>>178 一週目に章末Aまで、二周目に章末Bまでやって
それ以降は章末だけ繰り返した
苦手分野については例題でも何度もやった
解答の手順を覚えるより理解することを心がけた
ただ確率だけはどうしても苦手で細野やったけど
マジで基礎が大事と実感した一年だった
試験会場にも持ってったしねw
研究はガチで良書、信じれば伸びるよ
頑張れ!
>>179 ありがとうございます〜
参考にさせて戴きます。
>>179 ありがとうございます。T・A,U・Bも買うことを検討中です。
黒大数って各書問題数どのくらいですか?
それと、もしやるとしたら極選シリーズの間に黒大数という方がすんなりいきますかね?
近くの書店に置いてないので確認できませんでしたorz
>>182 やさしい俺が調べてやったぜ。
↓以下のとおりだ。参考にしろ。ちなみに問題数は総合問題も含むぜ。
例題 練習
T 156 101
A 140 105
U・B 315 163
V・C 282 107
184 :
大学への名無しさん:2010/04/08(木) 06:49:23 ID:uly8BUL5O
新高2 東大文一志望です
独学で数学進めようと思って本質の講義を買ってみたところ、もの凄く気に入ってしまって長岡先生の他の参考書をやってみたいと思いました
しかし今まで青茶で進めて来てしまったので、本質の研究を使うのは時間、掲載されている問題の両方の面から考えて得策ではないと思います
なので青茶例題が終わったら極選をやりたいと思ったのですが、極選は本質の研究をやってこそ高い効果が得られるものでしょうか?
大人しく1対1やスタ演をやった方がいいでしょうか?
>>184 まだ高二なのに偉いねー。
青チャ終わったのなら普通に一対一やればいいと思うけどね。
極選入れたいのなら、極選→一対一ってやればいいよ。
186 :
大学への名無しさん:2010/04/08(木) 16:14:39 ID:uly8BUL5O
>>185 ありがとうございます
自分は他の人より才能がないと思うので早い時期から頑張ろうと思っています
青茶→極選→1対1でいこうと思います
本質の解法を章末もまで含めてすべてやれば駿台全国偏差値65以上行きますか?
>>183 ありがとうございました!
規制中で書き込めなくって(遅くなってしまってごめんなさい ><
今TA研究をやっていて、例題が半分くらいしか1発で正解しない程度の実力のものです。
定義定理の解説ページは暇のあるときにちょこちょこ繰り返して、例題については◎(1発ok)〇(正解したが不安)△(間違えた)の方法で、
〇や△が二つ付いてしまった問題に関してそのページに付箋で「どうして間違ったのか、どのような理由でこの解法を用いるのか」というようなことを書いてこまめに何度も見直して暗記しているのですが、この本は本来そのような使い方(暗記)をするものではないですよね?
実際、例題を完璧にした後A問題をすると、例題でやったような類題はちゃんと解けるのですが、少し複雑なものになるとお手上げ状態のものが多いです(特に図形と計量や平面図形)。
その度にまた例題と同じように暗記をするのですが、このような勉強法で実力が付くのでしょうか?
エール出版から本を出してる人のサイトに「本質の研究はオススメ。問題は解く必要はないが1対1対応を終えた後に読めば殻を破れる」みたいなことが書いてあるな。
191 :
大学への名無しさん:2010/04/10(土) 21:23:11 ID:Og21f2c3O
長岡弟の授業で大分伸びてその後1対1やりました。今黒大数か研究やろうと思ってます。違いはどういう感じでしょうか。いい点悪い点教えてもらうと嬉しいです。
ラジオで大学受験講座すれば良いのに。
研究3Cの極限難しくありませんか?
初学者には向いてないのでしょうか
194 :
大学への名無しさん:2010/04/17(土) 01:59:47 ID:2le0Pc8bO
研究シリーズやりこめば
名大工学部の数学で合格点とれますか?
本質の講義 3Cは出ないんですか
本質の研究は、それ単体で東大京大以外の旧帝大普通学部なら
合格点を取れるくらいの学力はつくと思うよ。
章末は、入試で重要な標準問題が集められてるから、きちんと
章末までやれば、かなり力はつくよ。
確率が手薄とか言われてるけど、章末ではきちんと押さえるべき問題は
押さえてあるしね。
駅弁医学部などの標準問題でいかに落とさないか、みたいなとこ
受ける人は研究のあとに、河合の入試攻略問題集あたりを。
旧帝医(東大京大のぞく)を目指す人は、差がつきやすい問題を
やらないといけないから、やさしい理系数学やるといいんじゃないかな。
1対1なんかは不要だと思う。
197 :
大学への名無しさん:2010/04/18(日) 19:56:04 ID:nrrVHoPIO
>>196 ありがとうございます!
何周もして完璧にします!
198 :
大学への名無しさん:2010/04/23(金) 16:14:40 ID:1OwtxH3U0
ライブ講座の評判ってあんまり聞かないけどどうなの?
本質の研究はやらないほうがいいと思う、初級者にはたいしてわかりやすくないし
本質の講義のほうがいい中上級者には簡単すぎていらない大数系や標問シリーズやればいい
章末問題も解説がないし網羅度も中途半端
授業の内容も頭に入っていない人は本質の講義のほうがいいね
で、講義と研究だと内容がかぶりまくってる
でも3Cはないんだったか
自分は初級者でも研究は何週もやれば身に付くと思うから
いきなり研究でもいいと思う
合う人にはいい本
>>199 今年のセンター数学1A70点・2B60点のカスだけど研究スゲーわかりやすいよ。
俺は前までマセマやってたけど、その100倍も研究の方がいい。
マセマは「君達バカだからこれとりあえず覚えてね」的な感じだし。
そうそう。自分に合うと思ったやつをやればいいの。
誰も聞いていないのにわざわざ個別のスレに来て
「やらないほうがいい」とか言わなくてもいいんだよ。
>>202 今年のセンターの1Aで7割越えはすげぇw
>>204 第3問しょっぱなからわかんなくて全滅して、そのかわり他は全部取った。
研究やってれば解けたかもって思って後悔してる。今年は満点目指して研究と心中するぞ!!
206 :
大学への名無しさん:2010/04/25(日) 17:29:38 ID:9zRVs2sCO
本質やった後極選やってその後にやさ理やって
京大理学部突入します
本質やるか黒やるか…そこが問題だ
黒大数は、現課程、旧課程、旧旧課程、旧旧旧課程のものを持ってるが、
新しいものほど取り組みやすくはなってるんだけど、黒大数らしさが薄れて
きて、薄っぺらで迫力がなくなってきてるのは残念だなと思う。
特に、現課程版のA編は簡略化しすぎでは?
ゆとり教育との関連で簡略化も仕方ないのかもしれないが、この部分を薄くすると、
この本の出番は少なくなってしまう。
今度の新課程版に期待したい。
どんだけ持ってんだよww
現課程版はニューアプローチと合わさったものだから簡略化は仕方がないのかなあとも。
でも確かに発展的なことがなくなったのは残念だと思う。
ニューアプローチにもC編?だったか発展的なことが載っていたのに。
なるほど。
研究と現課程の黒大数組み合わせれば最強だと俺は思っている。
本質の講義3Cはもうすぐ出ます。
>>212 研究VCでよう分からないとこがあるんで
出るなら早く出てほしいです
214 :
212:2010/04/30(金) 19:43:29 ID:Z5dmxpcg0
旺文社の中の人の情報だと
録音はすんでいるそうで、「早ければ4月には」とのことだったけど、
もうしばらくかかりそうですね。
頭の中でゆっくりと分からないところを考えておいたらどうでしょうか?
3Cも出版されるのか、凄いな。
本質は章末問題までやるべきか?
章末と一対一だとどっちがいいかね・・・
>>216 俺は本質を軸に勉強するつもりだからすべて章末まで完璧にするつもりだけど。
てか去年は参考書いろいろ手出しすぎてコケたからちゃんと1つを極めようと思った(当たり前かww)。
とりあえず8月末までに1〜C極選発展まで完璧にしてそのあと演習のために1対1(B3C)とかやろうと思ってる。
なんにせよ何か1つ軸を決めてそれを完璧にするといいと思うよ。
本質の研究は先取りに向いてますか?
先取りというかあれは教科書みたいな感じ
個人的に本質シリーズは解法が好き
今の受験生には関係無いが、解法の著者の開成の先生亡くなったそうだし
本質の解法は現課程で終わりかね。
221 :
大学への名無しさん:2010/05/06(木) 08:03:41 ID:CQay5Xu00
本質の講義VCまで出たら、まさにラジオ講義みたいなもんだな。
本質の講義VCは八月末に発売されるみたいですね
>>222 来年も浪人するようでしたら使わせてもらいます・・・
研究IAの例題96について質問です。対偶をとらずに求めようとしたのですが、答えが合いません。
とりあえず、自分の解答を晒すと
x^2-6x+a≦0の左辺について y=f(x)=x^2-6x+a…@ とおくと
y=x^2-6x+a=(x-3)^2+ a-9 となるので
@の方程式は頂点(3,a-9)をもつ下に凸の放物線である
よって題意を満たすとき
f(3)≦0 かつ f(4)>0でなければならない
f(3)=a-9 より a≦9
f(4)=a-8>0 より 8<a
つまり 8<a≦9 ・・・(答)
『x^2-6x+a≦0 を満たすすべてのx』と問題文に書かれているので、f(3)≦0という条件を入れないと与式を満たすxが存在しない場合(y=f(x)がx軸より常に上)も含まれてしまうと思うのですが、f(3)≦0は検討しなくてもいいのでしょうか?
詳しくは
ttp://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1140414351 長文失礼しました。
検討しなくてもよい
満たすxが存在しなくてもよい
命題と条件のところで、AならばBという命題について復習すべし
「1>2 ならば 10は奇数」という命題は真か偽か?
>>225 ありがとうございます。でもやっぱりわかりません。
x^2-6x+a≦0 ⇒ x<4 が真であるようなaの値
そうすると {x|x^2-6x+a≦0} ⊂ {x|x<4} となって
x^2-6x+a≦0であるxの値の集合はすべてx<4のxの集合に含まれるということですよね。
x^2-6x+a≦0であるxの値の集合っていうのは、やっぱりf(3)≧0のときはxの解はないので
f(3)≦0を検討する必要あるように感じてしまうんですが・・・。
たぶん的外れなこと考えてますね。もう少しわかりやすく説明していただけませんか?
「 x^2+1≦0 ⇒ x<10 」
じゃあこの命題の真偽は分かる?
>>227 x^2+1≦0は実数解をもたないので、わかんないです・・・。
とりあえず対偶を取れば真であることだけわかりました。
これが分からないのなら、もとの問題の疑問は分かるはずがない。
本質の研究のp256のノートの部分を読んでもう一回考えてみて。
>>229 わかりました、また明日じっくり考えてみます。付き合ってくださってありがとうございました。
231 :
224:2010/05/12(水) 21:56:23 ID:DqXsfYQN0
noteの部分読みました。まだわからないのですが、まずnoteのことについて質問です。
>>この型の文は、単なる条件ではなく、xの値によらず真偽が定まる命題であると考えてよい
この「単なる条件でなく、xの値によらず真偽が定まる命題」の部分がわかんないです。
例5-12では「x>1 ⇒ x^2>1 は真」と書いていて、
私にはx>1は単なる条件にしか見えないし、x^2>1はxの値の範囲を指定しなければ真偽は定まりません。
なので、「したがってまた…」の部分もわからないです。たぶんここが重要だと思うのですが。
このように、p256のノートの部分はわかりませんでしたが、p250の上の空集合の記述より解決できるのではないかと思ったので、下に私の考えを書きます。
232 :
224:2010/05/12(水) 22:16:10 ID:DqXsfYQN0
p250「φは任意の集合の部分集合であると約束する」より
x^2+1≦0 ⇒ x<10 について
x^2+1≦0を満たすxの集合は空集合である。
空集合は任意の集合の部分集合であるので、x<10であるxの集合の部分集合であると考えると、
{x|x^2+1≦0}⊂{x|x<10}が成り立つ
よって x^2+1≦0 ⇒ x<10 は真である。
次に x^2-6x+a≦0 ⇒ x<4 について
y=x^2-6x+a・・・(※)とおく
(@) (※)式がx軸と共有点をもたないとき
x^2-6x+a≦0を満たすxの集合は空集合であり、すなわち任意の集合の部分集合であるから、x<4を満たすxの集合の集合であると考えると
x^2-6x+a≦0 ⇒ x<4 は真であり、常に成り立つから
(※)がx軸と共有点をもたないときはaの値の範囲を考慮する必要はない
(A) (※)式がx軸と共有点をもつとき
対称軸はx=3であるから x^2-6x+a≦0 ⇒ x<4 が真であるための条件はf(4)>0だけでよい。
と、こんな感じになりました。まあ(@)(A)みたいに場合わけすること自体ナンセンスなのかもしれませんが、私としてはこれで納得しました。
どこか間違っていると思われるところがあれば教えてください。
233 :
224:2010/05/12(水) 22:19:53 ID:DqXsfYQN0
少し訂正。
wikipediaに「全ての集合は空集合を部分集合として含む。」と書いていたので
私の述べた「空集合を、x<10であるxの集合の部分集合であると考えると、」っていうのはおかしいですね。
{x|x<10}は空集合を部分集合として含んでいるわけですから。
本質の研究って本当良い参考書だね。
導入部分で教科書の内容を理解して、例題で式変形や定理公式の応用を学ぶ。
章末では、入試典型題と差のつく頻出問題を扱ってる。
一冊で多分東大京大以外の難関大までの実力がつくと思う。
それぞれの段階で前の段階にフィードバックしながら進めると、より力が
つくようにできてる。
欲を言えば、章末のパターン問題の解説に定石について書いていて欲しかった。
数学を1から勉強しようと思い文英堂の「これでわかる」をやっていたんですが、説明が簡略に書かれすぎて分かりづらかったので、
本質の講義を買ってみたところ、詳しく解説してくれるので分かりやすく気に入りました。
ですが、音声だと時間がかかり過ぎるので、可能なら本質の研究をやりたいのですが、初学者レベルにはきついでしょうか?
>>235 初学者レベルの状態で読んだけど
結構時間かかったと思う
でも研究は読んでて面白いから是非おすすめしたい
とりあえず研究買ってみて難しくて時間かかるようなら講義にすればいいんじゃないかと
>>231 ながなが説明するのはめんどうなので適当に書きます
> x>1は単なる条件にしか見えないし、x^2>1はxの値の範囲を指定しなければ真偽は定まりません
はいそうです。x>1もx^2>1もどちらもxに関する「条件」です。でも「⇒」でつないだ
「x>1 ⇒ x^2>1」←これは「命題」です。理由は本質の研究にも書かれているとおり、
「すべての」という言葉が省略されているから。
「x>1 ⇒ x^2>1」をもう少し正確に書くと「(すべての実数xに対し),x>1 ⇒ x^2>1」ということ。
多分これだけじゃ分からないと思うので適当な本で、もう一度命題とか条件とかについて
しっかり調べたほうがいいと思う。教科書でしっかり確認することもおすすめ。
大学への数学A(研文書院)のA篇も分かりやすいと思う。
>>235 俺も時間がかかると思う。本質の研究って結構レベル高いよ。
本質の講義をやってみて気に入ったんならそのまま続けたら?
講義と研究は結構説明がかぶっているから、講義をやったぶん研究も結構スムーズに進むと思う。
あと、音声を聞くのに時間がかかると思うのなら、倍速で聞くのもいいよ。
239 :
224:2010/05/13(木) 00:14:28 ID:Emgs7UGc0
>>237 詳しい説明ありがとうございます。ノート部分の言わんとすることはわかりました。
命題と条件ばかり勉強していてはいられないので、ちょこちょこやるようにします。
>>236 ありがとうございます。とりあえず研究やってみて、分からなければサポートで講義を使うということでやってみようと思います。
ちなみに本質の研究に取り組む場合、本質の演習・解法は必要だと思いますか?
>>240 それは必要ないと思う
とりあえず一週目は理解することだけ考えて読んで欲しい
>>238 一応倍速で聴いてますが、自分の分かっているところを飛ばす判断が難しいので困ってました。
本質の研究レベル高いですか…本質の講義くらい簡単なところから説明してくれて、難解なところまで踏み込む、
という形なら有難いのですが、簡単な内容は簡略に書かれてたり、省かれている感じでしょうか?
>>242 >簡単な内容は簡略に書かれてたり、省かれている感じでしょうか?
そんな感じといえばそんな感じかなあ。初学者がイキナリやって
理解できるような本ではないと思う。授業や教科書と併用するような本でしょ、これは。
まあ自分がやりやすい方法でやってみたら?分からなかったらやり方変えたらいいだけだし。
1 いきなり本質の研究 わからないところは本質の講義でフォロー
2 本質の講義(音声アリで)から 分かりにくいところを研究でフォロー
3 本質の講義(時間省略のため音声なしで)から (ry
好きなやり方でどうぞ。(まあ、2か3のほうがおすすめだけど、自分のやりやすい方法で)
初っ端研究やった俺は道を間違ってたのかも試練・・・
これより丁寧に書いてくれてる本が見つからなかったからなんだがな・・・
>>243 やはりそうですか。アドバイス参考に効率の良いやり方を模索してみようと思います。
241さんもありがとうございます。
最後にもう一つ質問させて下さい。だいぶ先の話にはなりますが、講義と研究で基礎を固めた後、チャート式(黄茶or青茶)か1対1に
進もうと思っているのですが、研究をやった後でもチャート式はやったほうがいいと思いますか?
>>245 研究の章末問題は典型問題が多いので内容が1対1やチャートと被っていると思います
なので章末までやれば必要ないと思いますが、それでも抜けはあると思うので
パターンを完璧に覚えたいと言うなら網羅系と呼ばれるものをやるのは否定はしませんが
過去問や極選などに進むほうが効率はいい気がします
個人的には章末やらないで1対1とかもありかなと思います
>>246 大変参考になりました。ありがとうございました。
研究と基礎問もってるんだけど内容かぶる?
研究で理解を深めつつ基礎問で演習つもうと思ってるんだけど
基礎問+標問+研究ってどう?
249 :
224:2010/05/15(土) 17:23:55 ID:kNev6+vI0
>>248 いいんじゃない?俺は8月中旬くらいまでに極選まで終わらせた後、基礎問/標問を問題集的なかんじで解きまくるつもりだよ。
俺は数学得意じゃないから、やっぱり抜けがあるのは怖いからね。
あらごめんなさい。名前入ったまんまでした。
『本質の講義』の後には『本質の研究』もやるべきでしょうか
253 :
大学への名無しさん:2010/05/19(水) 16:31:16 ID:qR/ThKhq0
基本的に黒大数が駿台本科のテキスト二年分やから 半分位解けるように
しとけば 大体どこの大学でも圏内よ
あの中には模試の問題とかも入れ替えされながら改訂されて来てるし
黒大数って問題集?青チャの良質なやつみたいな感じ?
255 :
大学への名無しさん:2010/05/20(木) 06:30:36 ID:6RTHNorJ0
長岡コース
本質の講義→本質の研究→黒大数
>>255 まだ研究完璧にしてない頃から早漏だが研究の後って極選がセオリーだよね?
黒大数ってどんな感じ?
257 :
大学への名無しさん:2010/05/20(木) 23:54:40 ID:6RTHNorJ0
>>256 いや俺もまだ研究完璧にしてない
完璧にしたら黒大数に進む予定
研究VCのp255の例題55の問題なんですが、
下から2行目の式を展開するとどうしても答が(1/2)(3-3e)になってしまいます
誰か分かる方教えてもらえませんか?
式も書いてから別スレで聞いたほうがいいでしょうか?
259 :
258:2010/06/02(水) 04:01:33 ID:suC5am070
自己解決しました
スレ汚しすみませんでした。
260 :
大学への名無しさん:2010/06/05(土) 13:25:51 ID:zhaWVTud0
黒大数いいね。
数学だいっきらいで、模試の偏差値は去年の駿台高2全国模試の年間アベレージで65弱ぐらい、こないだの高3全国は60切ったかも。
東大理T、慶応医が志望なんだが黒大数と過去問で合格者平均いけるかな?
黒は結構自分にあってるらしく、はじめて数学の勉強が軌道に乗りはじめてる気はするんだけど・・・
黒に出てる手法/着想をマスターしても理論的に解けない問題って出る?(黒には載ってないが、この考え方を知らないとまず試験場では解けないだろう、とか)
もしあるとすればどの本で補うのが良い?やさ理とか?
個人的には過去問見た感じ無理ではないとおもったけど、自分は受験数学の全体像が未だ微塵とてつかめていないので、皆さんのご意見を伺いたいです。
学校のプリントとかがあるので、理系入試標準レベルの演習量はそこで多少補えると思いますが・・・
マスターオブ整数やっとくべき
262 :
260:2010/06/05(土) 20:49:21 ID:zhaWVTud0
>>261 マスターオブ整数は秋ぐらいからやってみようかと思ってた。
ただ、1対1も然り、東京出版のってどうも読みづらくない?
1対1等が思考力養成になるとかってレスよくあるけど、日本語の下手さが一因な気が・・・
まぁ確率とかは解法自体面白いと思ったけど
俺が馬鹿なんかね 思考力養うには逃げずに東京出版と格闘するべきなのか?
創意が見えたり、いろいろな発見があったりして明らかに黒本の方が読んでて面白いんだけど。綺麗で見やすいし
>>220 本当に?
著者紹介の文章を見るとあまりお年を召しているようには思わなかったんですが。
>>260 黒大数いいよね
自分的には整数よりかは数3は補強した方いいと思う。
考え方とかは充分なんだけど数3は知ってれば解ける類なの東大でも多いし、論理力とか定性的理解よりかは定量の比重が高い。
オススメはお金あれば長岡弟の東大数3C通年プラス夏期
無かったら求積問題で難問まで含んでるものかな。
解探もいいんだけど俺は長岡→解探だったからアドバイスできぬ。すまん。
とりあえず黒大数はこれから流行る…はず!
265 :
260:2010/06/06(日) 01:41:56 ID:bVTljllV0
>>264そだね。まず3Cは固めたい。
1Aも黒本でやるといいことある?
若干スレチですまぬ。なんせあんま使用者の声が聞けないので
黒、網羅性もなんだかんだ凄いと思うけど、若干抜けあるよな。格子点とか。
あと大事な考え方だけど1箇所にしか出てないってのも多い気がするから隅までしゃぶりつくさないと
>>265 今どのくらい出来るかによるけど数Aはきっといい事あるよ。
あんまり出来ないなら数1もやるといいかもだけど…
っていうか黒大数と一対一、長岡弟→極選、ハイレベル精選1A2B、新スタ演したんだけど
黒大数→ハイレベル精選(黒大数ニューアプローチ著者の一人で教授)がよかったな
やっぱり予備校系は解り安いし模試、中堅によく出る問題選んでるけど、大学教授が作ってる問題を、大学教授が説明してるんだから一皮向けるのにやっぱりいい
本質の講義買ったが著者のおっさんの息使いと口のクチャクチャ音が不快でCD聞けねえ
268 :
258:2010/06/06(日) 18:13:19 ID:1roAwHIH0
研究終わるんだけど繋げるためのオススメってどんなのがある?
黒大数、極選、1対1あたりで考えてるんだけど、それぞれの特徴とか教えてください
変なコテつけたままでした申し訳ない。
>>268 黒大数:ごめんなさい、僕は分からない。過去スレ読めば情報あるかも?
1対1:問題のレベル的にはそう難しくない。大数独自の解法テクニックが売り。
ほとんどは計算や解答の簡略化をするためのものだけど、そういうものは
個人的には正直いらないと思う。
極選:研究の章末からやや難しいものまで。
これを使うイメージとしては、研究でやったことをさらに伸ばして、応用範囲を広げる感じ。
もともと研究でそれができているヒトはいらない。
と、超個人的な感想です。
次に何をやるかは志望校にもよるとおもいます。
ただ、その3つの中だと極選ですかね。
章末まできちっとやってれば1対1は不要です。
研究の章末は、大体の典型題を抑えてあるので、標準問題と銘打った参考書は必要ないですから。
あなたの質問に答えるとこんな感じですが、研究を終わらせたのなら、
まず過去問演習が先だと思います。
そこで、志望校の入試問題と自分の学力との距離を見定めてください。
そうすると、研究の復習が足りないのか、演習が必要なのか、もう少し
ハイレベルな参考書が必要なのか自ずと分かります。
そうして、自分に必要な次のステップが分かってから、問題集を選んでください。
これだけ70か極選の実践編で悩んでるんだけど背中を押してくれ
272 :
大学への名無しさん:2010/06/07(月) 22:48:36 ID:drDoYeJK0
>>271 良書なのは保証してやるから、これだけ70にいってこい!!!!!!
本質の研究TAの例題124で、
△GBCの面積が全体の面積の3分の1であるこというために、
なんでわざわざ△GBCを二つに分割して考えてるの?
274 :
258:2010/06/10(木) 07:10:16 ID:CpBw0W3b0
>>273 俺も同じとこで悩んだわ
自明だと思うなら直接△GBC=1/3△ABCと書いても特に問題は無いらしいけど
ADを底辺と考えると△BDGと△BDAは高さが同じ三角形だから
底辺を1/3にしたら面積も1/3なのがより良くわかるでしょ?
っていう理由らすぃよ
またコテつけたまんまでごめん・・・
>>274 なるほどー
でも個人的にはBCを底辺として考えるほうが自然に思えるけどな
サンクス
本質の研究(本質の解法ではない)の問題レベルってどのくらいですか?
中学生でも解けるものから東大過去問まで幅広く取り揃えております
VC189ページのコラムの意味がやっとわかったわ
これって数学的には深刻な問題じゃん
教科書や他の参考書にはこういうこと書いてないみたいね
280 :
大学への名無しさん:2010/06/14(月) 20:46:31 ID:F1oXpFqLO
UBのp153例52なんですが
L1とL2の交点はどうやって求めたのか教えてください
>>280 連立させて解いただけだよ
ところで、研究の章末って大数でいうB〜C問題だよね?
章末AにはA問題もたまにあるけど…
例えば君と僕が連立をして
そこから出来た情報は
君と僕に可逆的な
情報を持っていますか?
メンデルの法則?
1/2の情報?
285 :
大学への名無しさん:2010/06/15(火) 20:09:30 ID:x8FbgZBIO
2つ方程式あって、その交点求めるときどうする?
あなたが求め方が分からないって言った交点は何と何の交点?
中学の範囲のこと分からないって言ってるんだよそれ…
ちゃんと1Aやったの?
287 :
大学への名無しさん:2010/06/15(火) 23:29:43 ID:x8FbgZBIO
すいませんL1:y=-3x だとずっと勘違いしていました
解決致しました…orz
288 :
大学への名無しさん:2010/06/19(土) 01:31:34 ID:Gp4hFuGV0
age
289 :
大学への名無しさん:2010/06/23(水) 23:36:59 ID:1zjEwd5z0
黒と1対1ってどっちがむずい?
あと、黒終えた後におすすめの問題演習って何かある?
290 :
大学への名無しさん:2010/06/24(木) 10:40:32 ID:Wx0v/W4m0
黒の方が難しいと思う
あと黒だといわゆる典型問題の抜けがあるからやさ理あたりが無難じゃね
いきなり大数スペシャルでもいいかもしれんが・・・
旧帝(北大東北名古屋)理系志望の浪人です。
偏差値が47〜50くらいなんですが、これから本質の研究を使おうかと思っています。
今からでも間に合うでしょうか?
残念ながら無理だと思います
>>291 これからでも研究を終えることは出来ると思いますが、
他の科目もこれから始めるのでしたら確実に時間は足りません。
数学に十分な時間を割けるなら研究という選択肢もあるかと思いますが、
そうでないなら夏以降は演習に回すのがセオリーだと思います。
自分の残り時間と相談してみてください。
俺も今3ヶ月弱かけて研究をUBまである程度終わらせた段階だが、
今から3冊を最初から、しかも余力を持って読む(偏差値60以上程度)のではなく、
初歩的なレベルの確認から入るとなると、上の人たちと同じ意見で、
普通は数学以外に手が回らなくなると思う。
ただ一方で、論理的な理解を経て定性的な(チャート的な)暗記に入らないと、
勉強効率が悪いのも事実だし、結局研究とか黒あたりを一度やるしかないような…。
旧帝なら尚更ね。その上で他教科もまわす、これは頑張れとしか言いようがない。
>>294 俺も今3ヶ月弱かけてUBまで一通り終わらせてVCに入ったところだ。
IAUBは、あとは何回も繰り返し読みまくって、各問題◎3つ以上つくまで解くだけ。
たしかに今からはじめるとしたらキツイかもな。でも今から青チャやるよりは研究やった方が効率いいよね。
青チャは問題のチョイスが糞すぎだし。
291は理系なんでしょ。研究やったらいいと思うけどなあ。
数学はまず典型的な200問ぐらいを覚えろ
それだけで偏差値65は行く
数学は(基礎出来てる奴なら)まず典型的な200問ぐらいを(記述の流れを理解して)覚えろ
それだけで(ベネッセ)偏差値65(くらい)は行く
>>297 まあ典型的な問題にもレベルがあるし、文理にもよるからな。
詩文なんか研究だけで偏差値70超えそうだよな。
>>297 予備校の前期テキスト丸暗記で全統偏差値70行った
けっきょくのところ受験数学は暗記なんだよお前ら
1対1やれ
方法論は人によるよ。
てか>記述の流れを理解して
なんだから、単純暗記とは違うだろう。
UB P203 例題80(2)について、
「●印は含み」って書いてあるけど図に●印ないよね。
(1,0)、(4,3)のところが●でいいんだよね?
>>302 研究、解法、黒大数
何の話かちゃんと書こうよ
受験は暗記だ
まず100問の問題と答え丸暗記してみろ
それだけで全統偏差値60超える
芸術は爆発だ
まず100人の芸術家の作品を模倣してみろ
それだけで今の自分の限界を超える
結局理解せず丸暗記出来る人は少ないと思うけどな、
特に単語とかじゃ無くて、数学みたいな論理的な事は。
丸暗記出来るけど、自分が理解してる事を自覚してない人は結構いそうだ。
理解が追いつかないと、暗記そのものが難しくなるんだよ。
理解と暗記って2分されるようなものじゃ無いよ。
芸術の真似にしたって、真似出来る技術が無いと真似しようが無い。
まあ数学とは違うところもあるが。
つまり
数学は芸術だと
いうことですね
310 :
大学への名無しさん:2010/07/14(水) 22:48:38 ID:0QFXoMQb0
やっぱ黒大数って改訂重ねる度簡単になってる?現行は別にいうほどむずくないよぬ?
と話を黒本にもってくテスト
黒本最高だよ黒本♪
本質研究の2Bって色濃くない?最初1Aから移ったとき黒々しすぎてて非常に違和感あった。
数学ライブ講義やった人いる?
黒大数とどっちが難しいのかな?
あとどっちを先にやるべきだと思いますか?
現役のとき本質の研究→青チャ→過去問で京大受かった
研究はほんとに良書
291ですが、パソコンも携帯も規制されてましたすみません。
レスくれた方どうもです。なんとかやってます。ありがとうございました
315 :
大学への名無しさん:2010/07/22(木) 17:54:34 ID:vEDZ+ppa0
本質の講義III・Cマダー?
研究で我慢してください
317 :
大学への名無しさん:2010/07/23(金) 03:41:43 ID:ZyF7+FX60
黒い大数U(指数関数三角関数の章が入っている巻/2003年第7刷)の「A4.5関数の増減と極大・極小」の例11の問題に
x≠0の時、f(x)=X、
x=0の時、f(x)=−1
という関数について、x≠0であるすべてのxに対して、f'(x)=1であるが、f(0)は極小値である。
とありますが、これ間違いですよね?
318 :
大学への名無しさん:2010/07/23(金) 12:50:43 ID:dJ79z2ye0
あってんじゃね
極小値と最小値を読み間違えてるとか?
極小値はf(0)だが最小値は存在しない
319 :
317:2010/07/23(金) 14:31:23 ID:ZyF7+FX60
>>318 回答ありがとうございます。極小値とは、Xの増加とともに、y=f(X)が減少から増加に転じる点ですよね?
すなわち、極小値とは X=aの近傍で、f(X)が連続であり、f(X)>f(a)が成り立つ、ということだと理解しています。
しかし、
x≠0の時、f(x)=X、
x=0の時、f(x)=−1
という関数では、x=0では、連続していないので、極小値と言えないのではないかと思うのですが。
>>319 連続である必要は無いよん
適当な開区間で最小ならいいんだよん
321 :
318:2010/07/23(金) 15:36:03 ID:dJ79z2ye0
>>319 >極小値とは、Xの増加とともに、y=f(X)が減少から増加に転じる点ですよね?
それはf(x)が微分可能な関数であるという条件ではいえるが、一般の関数ではいえない
例11がそれ
>極小値とは X=aの近傍で、f(X)が連続であり、f(X)>f(a)が成り立つ
「f(X)が連続であり」この条件はいらないです、実際、定義2にもないでしょ
例11って定理5の下にあるので勘違いしそうだが、定理5を適用したのではないよ
定理5は極値であるための十分条件であり、例11は定理5の適用条件を満たさなくても
(つまりx=0で連続でなくても)極値といえる例として挙げてある
同著者の長岡先生の本質の研究VCのP.155から引用すると
「f(a)が関数f(x)の極大値であるために、f(x)がx=aで連続である必要はありません」
とある
上で定理5とか定義2とか書いたけど俺のは旧版なので番号ずれてるかも
最後に僕は受験生なので絶対的に信用しないで、本屋で大学の微積の本とか立ち読み
して確認して下さい
322 :
318:2010/07/23(金) 15:42:28 ID:dJ79z2ye0
それはf(x)が微分可能な関数であるという条件ではいえるが
x=aで微分できるかどうかは不問←これ追加しといて
323 :
318:2010/07/23(金) 15:49:36 ID:dJ79z2ye0
「それはf(x)が微分可能な関数であるという条件ではいえるが、一般の関数ではいえない
例11がそれ」
ごめん、この「・・・」無視して
>90
325 :
317:2010/07/23(金) 19:28:01 ID:ZeY2fhecO
>>318丁寧に解説して下さり、どうもありがとうございますm(__)m 。
また、本質の研究?CのP.155を読みました。納得しました。
黒の大数の「定義」と「定理」という言葉の区別の意識が低かったです。
書籍を読むというのは、言葉を大切にする緊張感が大切だと思いました。
本当に、どうもありがとうございました。
>>320 どうもありがとうございました。
「連続である必要なし」ということに驚きましたが、
自分の理解が不十分かも知れないと思い、意義深く思いました。
326 :
大学への名無しさん:2010/07/23(金) 21:34:36 ID:Bime5RD50
黒大数数学T とA。UBとVC 下の類題以外
全問ひととおり解いたんだけど、
解説見ないで解けたのは8割5分くらいかな
♯ついてない問題でも難しい問題はあったかな
東大京大クラスの問題レベル
だとちょっと物足りないかな
327 :
大学への名無しさん:2010/07/23(金) 22:02:50 ID:YCdZ2ecG0
>>326黒は練習やらないと良さがわからないよ!ただの例題じゃなくて多角的に考察するヒント(題材?)だったりする
328 :
大学への名無しさん:2010/07/23(金) 22:06:13 ID:YCdZ2ecG0
規制されてると思ったからすぐ送信しちゃったが、たぶんちゃんと黒本消化したら東大なら75点ぐらいは可能だと思うょ
演習量を学校か才能で補えればね
俺はこの後、極意とスペシャルやるつもり
本質の解法に出会えて本当に感謝してる
京大理系過去問で1完2半できた時は興奮した
まあ簡単と言われる年度だし合格点にはまだ届いてないけど
このまま演習続ければ合格点に届く確信が得れた
マジで基礎固めるには最高だった
330 :
sage:2010/07/25(日) 22:53:08 ID:MXnGoQjsO
本質の研究例題終わらせ章末問題に入ったのですが、なかなか解けません…
例題終わらせた人はすらすらできるものなのでしょうか?
331 :
大学への名無しさん:2010/07/25(日) 23:31:01 ID:MXnGoQjsO
書き忘れました。
2Bの方です。
>>331 問題によるだろ。明らかに例題で扱ったことのある問題、またはその考え方で解ける問題なら自力で解けなきゃ例題もっと復習すべきだし、暗記する系(こんな発想自力じゃ無理だろ…的な)の問題ならその場で理解して覚えればおk
本質の解法3Cの576(2)の問題で質問があります。
お持ちの方助けてください。
rn=rn-1+tanθ(rn+rn-1)と立てたのですが、
これだと公比の分母と分子が逆で間違っているようです。
どこで考え違いしているかわかる方いませんか?
334 :
大学への名無しさん:2010/08/09(月) 23:28:18 ID:lZBUbb9xO
早く本質の講義のV・Cをだしてほしい
>>334 春頃には秋に出版と言われてたがいつになるかな
いずれにせよVC独学の予定なので早く出てくれないと困る
研究で独学可能だろ
期末試験が終わった頃に書店に聞いたら、
旺文社に確認してくれて、本質の講義3Cは
8月20日の予定と言われたので、予約した。
まだ連絡はないから発売日の変更はないはずだけど。
聞いてしまえばとっても簡単ってやつ、これって公式とか定義とか定理?とか、そういうのは一応全部載ってるんですかね?
339 :
337:2010/08/15(日) 22:57:51 ID:K381Wbng0
>>338さん
現在の指導要領向けに一時期、旺文社が出していた教科書に
音声がついたのが本質の講義(聞いてしまえばとっても簡単)だから
教科書に載っているようなのは全部載ってる。
どうもありがとう!!そっか、安心。
てか本質の講義ってこれだったのか。よく見たら表紙にもこっそり書いてありますね。Tだけ買ったんだけど。
全部(Bまで)買ってみよっかなー。
俺みたいな奴には非常にありがたい感じがする。
341 :
大学への名無しさん:2010/08/16(月) 15:47:55 ID:71KKZ5tjO
>>340 本質の講義→本質の研究→その他の問題集
342 :
大学への名無しさん:2010/08/16(月) 16:01:21 ID:zjeDa6ke0
→1;2→秀英
1対2って何ですか?
東京出版の1対2対応の演習に決まってるわな。
先生1人、生徒2人ってことだと
話題に出てた本質の講義買ってみたがこれは素晴らしいな
自分数学大の苦手なんだけどわかりやすいし集中出来るし買ってよかったよ
本質の解法と青茶のレベルと網羅性の差ってどれくらいですか?
青茶買おうか迷ってます。
>>337 昨日本屋に行ってもなかったんですが、何か連絡ありましたか?
348 :
337:2010/08/21(土) 10:19:39 ID:8MqKZrUy0
>>347さん
いいえ、連絡はありません。
ただ、書籍の場合は20日発売というのは
出版社を出るのが20日ということで
それから取り次ぎを経由して、書店に入荷という流れだそうで、
店頭に20日に並ぶというわけではないそうです。
村上春樹とかベストセラーになりそうな本は
その分を見越して発売日を発表するそうですが
参考書は20日発売=20日出荷でしょうと言っていました。
ところで昨日ほんとうに本屋さんに行ったのでしたら
直接店員さんに聞けばよかったのではないですか?
>>348 丁寧なレスありがとうございます。
20日から少し間が空くのですね。
店員さんに聞かなかったのは、知りたく思う気持ちよりも「聞いてしまえばとってもかんたん!」という書名を口に出して聞くのが恥ずかしく思われる気持ちが先に立ちまして…
高一です
本質の研究と傍用問題集を日常学習に使っています
文系を選択すると思うのですが
この次の参考書でオススメがありましたら教えてください
塾の先生に聞いたところ一対一がいいと聞いたんですが
研究の章末問題と被ってる気がしました
351 :
337:2010/08/23(月) 10:51:00 ID:YNO6vVTK0
旺文社のサイトの新刊情報のページにも、
これから出る本のページにも、本質の講義3Cがなかったので
書店に聞いたら、旺文社に問い合わせてくれて
いまのところ、27日発売、書店に入荷するのは翌週の火曜か水曜
と返事もらいました。
聞いてしまえばとっても簡単! 数学III 本質の講義
ISBN10: 4-01-033340-5
ISBN13: 978-4-01-033340-2
著者: 長岡亮介 著
出版社: 旺文社
発行日: 2010年8月30日
仕様: A5判/CD-ROM 1枚
対象: 高校向
分類: 高校(数学:数学III・C)
価格: 1,890円 (本体1,800円+税)
聞いてしまえばとっても簡単! 数学C 本質の講義
ISBN10: 4-01-033350-2
ISBN13: 978-4-01-033350-1
著者: 長岡亮介 著
出版社: 旺文社
発行日: 2010年8月30日
仕様: A5判/CD-ROM 1枚
対象: 高校向
分類: 高校(数学:数学III・C)
価格: 1,575円 (本体1,500円+税)
だそうです。学参ドットコムにありました。
353 :
大学への名無しさん:2010/08/25(水) 18:46:39 ID:BcbJrCRq0
本質の講義のCDってどんな形式とってんの?
教科書にある問題を解説してるとか、
教科書の公式やら基礎事項やらを説明してるとか、
どんな感じ?
今まで講義系のCDとか聞いた事ないからわからん。
354 :
大学への名無しさん:2010/08/26(木) 00:12:05 ID:v+9LlrdEO
本質の講義は、教科書用に書かれた本で
基礎事項を説明してる。
356 :
337:2010/08/28(土) 16:07:23 ID:VDKYgKVL0
本質の講義3C入荷の連絡がありました。
今日は間に合えば帰りに寄りますが、
たぶん明日になります。楽しみだ。
では名無しに戻ります。
さっき本屋に行ったら本質の講義の数学3が売ってたので買ってきた。
今から聞いてみる。楽しみ。
それにしても旺文社のHPにはまったく情報が出てないな。なぜだろう。
ポイント7倍に釣られ、楽天ブックスで注文したw
届くのが楽しみだな、おい。
361 :
大学への名無しさん:2010/09/06(月) 00:20:25 ID:cpk/wxgcO
本質のUB例題64なんですが
3X-4Y+9>0
Y>0
4X+3Y-13<0
はどこからわかるんでしょうか
お願いします
>>361 長文失礼
右側に注がついているようにp.199以降で学ぶ考え方を利用する
つまりIがどの範囲にあるのかを直線の上か下かで絞ってやればいい。具体的には、…
Iは△ABCの内部にあるので、それを言葉で表すと
・直線AB(y=3/4x+9/4)より下にあり
・かつx軸(y=0)より上で
・かつ直線CA(y=-4/3x+13/4)より下。
…となり、EFGはこれらをそれぞれ式で表しただけ
なんでこんなことやるかっていうと、下の【研究】にもあるようにただ解くと確かに座標が4つ得られる
だけどそれ全部求めてからどれが三角形内部に入るか探すんじゃ面倒くさい。それ以前に絶対値の計算自体が面倒くさい
面倒くさい原因はIがちょこまか動くから→自由度下げられる方法考えよう→内心だから三角形内部にあるはず→そのことを式で表せたら幸せだなあ
というわけ
もちろん内接円との接点や法線考えたり3:4:5の直角三角形であること活かしたりメネラウスチェバ利用したりして解くこともできる
でも前後のつながりを意識させるようなこの解答解説から、著者の愛を感じとることもできないといけない
簡単な一例ではあるが、こういう特徴はばかチャートやらあほチャートやらと決定的に違う点でありこの本の面白いところでもあると思う
本質の研究は、「読み物として使用し、問題を実際に手を動かして
解くことははほとんどしない」という使い方もアリですか?
時間かけて1回しか読まないって使い方をしない限りアリだと思うよ
365 :
大学への名無しさん:2010/09/06(月) 19:41:55 ID:9BITFkGP0
366 :
大学への名無しさん:2010/09/06(月) 21:04:13 ID:NESsZbCaO
>>363 それもアリだけど、計算力に相当自信ないとちとこわいね
面倒でも多少は手を動かしながら読む(理解しながら解く)べきよ
書いたら割と頭の中を整理しながら視覚的にも理解できる
例に出すと、俺の同期で程数学がメチャクチャ得意なヤツらが2人いたけど
うち1人は中学で数V・Cまでやってて高校の頃には教養課程でやることにも手をつけてて
メチャクチャ計算が正確で早くて偏差値は大体全国一桁台だった(数学科に進んで今では研究者)
もう1人は学校教材をやりこんでて常に学年二番、全国で二桁台から外れたことなし
傍用のオリジナルや青チャート(当時の指定教材、今はフォーカス)を覚えるまでガリガリやってた
俺は得意も不得意も無く、総合でなら良かったが
不安な箇所だけノートにまとめて一応手を動かして頭の中で整理して
一対一やスタ演やりながら合計4〜5週はやった
昔の家庭教師先の子(いま付き合ってる医学部生)が本質の研究やってた縁でちと書き込みました
367 :
大学への名無しさん:2010/09/06(月) 23:44:47 ID:cpk/wxgcO
>>362 よくわかりました!
ありがとうございました
本質の研究と本質の解法、両方やるのは無駄が多いかな?どちらか一つだけで
十分?
369 :
大学への名無しさん:2010/09/07(火) 08:32:46 ID:YZYsEHVFO
>>368 他科目が万全で余程時間に余裕あるのなら両方やるといい
他科目も頑張らないといけないなら研究か解法のどちらかでいいと思う
本質の講義一通り終わらせたら研究・解法・演習のどれに取り組めばいいと思いますか?
皆様の意見をを参考にさせていただきたいです
よろしくお願いします
371 :
大学への名無しさん:2010/09/07(火) 09:12:45 ID:DSYviLclO
解法
372 :
大学への名無しさん:2010/09/07(火) 10:28:27 ID:mSKXEvPLO
研究やって、数列は坂田、確率は細野の本をやれば。
373 :
大学への名無しさん:2010/09/07(火) 11:40:18 ID:YZYsEHVFO
本質の講義3C出たんだ。
良かった。
研究UBの例題32で、なんでAからBの変形をしないと解決できないんだ?
ずっと考えてるんだけど全く理解できないorz
誰か教えてくれないか
>>375 パッとしか見てないから間違ってたらごめんお
Bを見る限り相加相乗平均だっけ?
それを使って=を求めるっていうよくある技法を使いたいんじゃないのかな?
Aで解けないか?
って言われたら下の[notes?]に書いてある通りの説明しか出来ないんだけど
vっていうのが変数な訳だからそれをどうにかして消したいんだよ
んで、Aから変形してもvは多分消せないんだと思う
わかんなきゃ変数消せる相加相乗平均スゲー
って思って読み流しとけばいいと思うよ
変化するもの同士を比べて最小だとかかんだとか言えないから変数を消したい(質問箱参照)
Aは分数関数(p.314)の形で理系なら微分でゴリゴリ攻めることもできるが、ここはスマートにいきたい
そこで分数を処理しやすいようにするためυ−a=xとおくとυ=x+a、υ>aよりυ−a>0、∴x>0
Aの右辺=x+a+a+a^2/x
=x+a^2/x+2a
≧2a+2a(x+a^2/xに相加相乗…を使った)
等号はx=a^2/xのとき、則ち…略
・相加相乗平均の不等式を使うのは、逆数の関係で変数を打ち消しあえるときだけにする
・変数ってのはその正体を明らかにする(例題65など)、消してしまう(軌跡の問題など)などしないといけない
と初めは覚えてしまって、使ってるうちに理解できるようになると思う
うまく説明できない。すまんこ
俺、偏差値27とかそんな成績しか取ってないんだけど、
このまま研究やってて大丈夫かな・・・
例題2週くらいしかやってないから章末か1対1かやろうと思うんだけど
やっぱり章末の方が効率いいかな?
1対1はTとAだけ買ってきて少しやってみたんだが、迷ってる
誰かアドバイスください
>>379 27とかで研究やっても無駄
やるとしたら本質の講義、はじはじ、白チャートのどれか
学年は?
研究UBの例題32のnotesでコーシーの不等式使って、最後に結論出してるところなんだけど
これAB≧n^2⇒A≧nまたはB≧n (n≧2) てことだよね?
なんでA≧nまたはB≧n てなるのか全くわからんorz
二日連続ですまないんだが誰か教えてくれないか
数学ライブ講座って、
B5判のサイズは大き過ぎるよなぁ。
あと、穴埋めの箇所があって、
嫌になって買わなかった。
A5判のサイズにして、
穴埋めなし改訂にすれば、もう少し売れるはず。
>>380 浪人です、高校時代は全く基礎も何も出来ていなかったので、
教科書の代わりに研究をやりました。
模試で点が取れないのは問題に触れた数が少ないせいだと思い、
何かで問題に多く触れようと1対1を買ったのですが、
章末問題をやってないのを思い出しどちらが効率いいのかと思い質問しました。
しかし、まだ基礎が出来上がってないせいなのかもしれません。
この前受けた模試は代ゼミの全国総合模試なのですが、
手ごたえは今までと対して変わりませんでした。
基礎をやり直した方がいいでしょうか?
>>381 コーシーは例題22のやつでこれは相加相乗じゃない?
と思ったら例題33の話だよね?
AもBも正の実数なんだから、
少なくともどっちかはnより大きくなることは当たり前じゃない?
1辺がA、その隣の辺がBの長方形を考えてみれば分かると思う
1辺がnの正方形より大きな長方形を作れるA、Bは
少なくともどっちかがnより大きくなるでしょ?
分かりにくかったらごめんね
>>383 浪人して27って私立専願だったけど国公立狙うとかそういうこと?
>>384 高校の時は勉強なんてしないで遊んでました
でも、自分のやりたいことを考えた時に大学に行ったほうが良いと思いました
それで今浪人してます
偏差値は去年のです、去年30超えたのは駿台の難しい奴で33とかだけです
今年から本質初めて、最初の模試をこの間受けてまだ結果は届きませんが、
あまり出来ていなかったのでどうしようかなと
志望はなるべく国立、できれば宮廷、できれば灯台です
>>385 理解したのか
どういたまして
>>379さん
長岡先生が書く本は、高学力層向けが多いからなあ。
偏差値が27だと、高校教科書の例題くらいでも
自力では辛いのでは。
もしそうなら、長岡先生の本の中では研究よりは、講義のほうがいいと思う。
心折れることなく難しい本をこつこつとやるのはいいことなんだけど、
受験は期限があるから、適切なレベルの本の方が効率いいかも。
東大に向けて頑張ってください。
駒場で待ってますと言いたいけど、僕はこの春、修了したのでいませんが。
>>386 宮廷合格するやつは夏休みまでに基礎は完成させる
今からやって受かるほど甘くない
他教科はどうなんだ
>>387 仰る通り教科書例題レベルもあやしいかもしれません。
何が基礎なのかも分からなかったので研究をとりあえず読み通し、
分からないところは分かるまで考えました。
章末は解説が若干分かりにくかったので、とりあえず放置していました。
基礎を鍛えるため研究から講義に乗り換えるべきでしょうか?
一度やり通し愛着もある本なので復習することで基礎を鍛えたいと思うのですが。
提言等あればお願い致します。
>>388 重々承知しています。
他教科もこんなものです、数学より酷いかもしれません。
無理かもしれませんが、やれるだけのことはやりたいと思っています。
390 :
大学への名無しさん:2010/09/13(月) 06:51:45 ID:XL0rzhbM0
>>389 東大はもちろん地方旧帝も厳しいね
偏差値27じゃセンターもろくに取れないだろう
マーク模試の成績はどうなのかな
受験は甘くないよ
「本質の講義」で基礎をしっかりやること
「研究」は教科書レベルを完璧にできた人がやるもの
そのあと「研究」の章末を 自 力 で 解くといい
もし解けなければ「講義」や「研究」の例題に戻る
八割解ければ偏差値60は超えてると思うよ
そのあと「極選」に進めば東大も夢じゃない
391 :
387:2010/09/14(火) 21:17:55 ID:Vbl+OO570
>>379さん
一番いいのは直接教えてもらっている人、予備校行っていたらそこの先生、
行っていなかったら高校の先生に現状を見てもらって、
どこまで戻ってどんな教材で学べばいいか見てもらうことです。
とりあえず書き込んである内容を見て、返事を書いてみます。
数学の勉強は、理論そのものを論理的曖昧さを許さずに学ぶことと、
問題を解いて、理論の定着や理解を深めていくことが
車の両輪のようにどちらもかかすことはできないのです。
>>研究を読み通し分からないところは分かるまで考えた
と389に書いてあることがちゃんとできているなら、
研究の例題をとばさず、ごまかさずに解いてみることです。
分かったつもりになっているところを、そうやって自分で見つけて
例題の解説を熟読してつぶしていきます。
解説が難しければ、その単元は本質の講義を使うのもいいと思います。
あと受験全体を考えたとき数学は効率がよくない教科だから、
足を引っ張らない程度になればいいと、おおらかに(?)考えておくことです。
ところで詳しく書かなくていいですが、
せめて理系文系くらいは書いた方がいいですよ。
偏差値27は釣りだろ
白紙で出してもなかなかとれないわ
393 :
大学への名無しさん:2010/09/15(水) 01:13:46 ID:Y/dJ9KK90
"最高峰〜"ってかなり良書じゃね?
俺的には、研究>最高峰>or=黒大数>>大数スペシャル ってかんじ
>>386 調子に乗っていてはいけない。
国公立工学系で過疎地の一番偏差値が低い所または芝浦工業大東京都市大あたりに合格するのに、
君だとあと1年以上かかると思う。
本質の研究使ってる人いる?
はい
半年かけてゆっくりやるつもりが、この夏休みの間にUBまでの2冊をやりきれました
早くやれた理由としては、まず読みやすいことが挙げられます。例題が少ないというのもその一つだと思います
高2なので入試で必要なレベルがわからないですが、簡単な計算も含め自分で演習を積む必要があると感じました
ただ、計算過程での上手い変形なども学べるので、妙なクセがつく前にやっておいて良かったです
例題に入る前の理論解説は抜群に親切でユーモアに溢れ、「そういうことだったのか」の連続でした
その解説に即した例題が並ぶので、理論と実践とがバランス良く理解できました
頭を使う話題ばかりなので本当に理解できてるか確認・復習するのが大変ですが、読むたびに新発見があって楽しいです
長々とすみません
>>398 さんくす
高1だけど傍用問題集とやっていきたいと思います
400 :
大学への名無しさん:2010/09/15(水) 13:37:19 ID:hetK2Str0
どうでもいいけど、講義が出てから研究の存在意義が半分になったような希ガス
初学者なら絶対に講義のほうがいいと思うんだが、どうだろうか。
講義の到達度ってどんくらいなんだ?
人による
本質の研究にもCD-ROMをつけてよ。
もっと早く知ってればな……
ある程度のレベルまで達した今からじゃやる気が起きん
405 :
大学への名無しさん:2010/09/16(木) 16:49:38 ID:BSaJ2Zx60
他の教科にも『本質の講義』が欲しいな
物理とか世界史とか
ぜひ旺文社にはシリーズ化して欲しい
406 :
大学への名無しさん:2010/09/16(木) 17:12:21 ID:UXiXcXRY0
他の教科にも『本質の講義CD』が欲しいな
英語とか国語とかも
シリーズ化をお願いしたい
長岡先生くらい金儲けに無関心な講師はそうそう居ないと思うが、
もし可能なら物理でお願いしたい
408 :
大学への名無しさん:2010/09/16(木) 17:38:55 ID:1H/U/ll70
世界史に本質も糞もあるかいな
物理で独学なら漆原のやつか、文英堂の「理解しやすい物理」オススメよ
スレ違いすまんかった
旺文社の教科書には英語と、
もう発売していない数学しかないんじゃない?
基礎問題精講シリーズに通常版とCD-ROM付属版を出すことぐらいは可能だろう。
410 :
大学への名無しさん:2010/09/16(木) 20:20:11 ID:ObbQXOko0
もう40歳になるおじさんですが、昭和63年に浪人し駿台で長岡先生の授業
を受け東大理二に合格したものです。
長岡先生の授業は、メリハリがあり何が重要なことかが良く分かり印象に残って
ます。同時期には世間的にはもう有名であった秋山先生も居ましたが、予備校生
の間では長岡先生の方が人気ありました。長岡先生元気でしょうか。
そろそろ46歳になる爺ですが、秋山(秋元w)・長岡両先生にはお世話になりました。
電通大助教授と津田塾大助教授でしたね。
長岡さんは予習してこないでその場で解答を考えるのが売り(単なるサボリw)で
4コマ目に向かって解答が徐々に洗練されていくと言われてました。
秋山さんは(弟子に作らせた?)解答プリントを配って、発想の仕方を教える感じ。
俺は頭の切れる長岡さんのファンだったけど
学生へのカリスマ性は秋山さんに分があった。
学者としては遥かに秋山仁の方が上なんだろうし。
よく恵羅さんをネタにしてたのが印象的。
3N+Yでは野澤さんしか受けてないけど
正直授業はつまらなかった。
412 :
大学への名無しさん:2010/09/17(金) 00:28:52 ID:K++okgSG0
>4コマ目に向かって解答が徐々に洗練されていくと言われてました。
クソワロタ
今の駿台にもそういう先生いますよ。
長岡師のマネだったんだなw
長岡っていくつ?
414 :
大学への名無しさん:2010/09/17(金) 01:32:00 ID:3GG+Sdbr0
黒大数が気に入ってほぼ全分野を解くなり読むなりしましたが、入試問題が解けるようになったかというとそうでもない・・・
原因は、
1.僕自身の数学パズルセンス
2.学習態度(取り組み方)
3.黒大数自体の特徴
4.問題演習量不足
のいくつかにあると思うのですが、東大理系数学での得点率をあげるにはどうすればいいですかね
夏の東大模試は代ゼミ50点、駿台45点くらいでした
積分と整数は標準/典型問題もかなり怪しいのでまず黒大数をやるつもりですが、ほかの分野では時間との関係から黒大数とお別れするべきなのかなと思っています(基本事項や基本パターンの抜けは自覚しているので、黒大数を読み込みたい気持ちはある)
伸び悩む原因として自分で最もありそうだと思うのは上の4ですが、あまり問題演習が好きでないこともあり、勉強法が定まりません
研究の章末は解きごたえがあって(あれでもやや難しく感じる)良いなというのがすこし解いてみた感想なのですが、研究章末だけでは過去問演習の前段階として不足でしょうか?
なにか良い問題集等があればご教授ください。
新・物理入門のような面白くかつ案外実践的にも有効な参考書があれば教えて頂たいです
415 :
414:2010/09/17(金) 01:42:41 ID:3GG+Sdbr0
模試の点数は確率ができたこと、模試だと賢しくそれなりに点を拾ってしまうこともありますので、実際の学力は40点に届かない程度だと思います
それと性格上、教材が簡単または単調だと油断してやらなくなったり飽きてしまうので、少し背伸びする程度ものがいいです。
読み返すとかなりスレの趣旨からそれた内容でしたね・・・読みづらい長文失礼しました
>>414 少し背伸びしたいなら、
「秋山仁の入試数学20の戦略」か「秋山仁の入試数学徹底攻略」をやったら?
20の攻略がボリューム的に実況中継程度。
秋山仁の入試数学20の戦略 全巻(1〜10)価格: 20,000円
秋山仁の入試数学徹底攻略 論法編 全巻(13巻+1巻)価格: 28,000円
秋山仁の入試数学徹底攻略 テクニック編 全巻(16巻+1巻)価格: 34,000円
http://www.mathlab-jp.com/index.php?main_page=featured_products 昔は、ビデオで出てて、教材の評価高かったけど、今より高価だった。
今はDVDで再登場。
410や411の書き込み見て、
秋山さんの講義はどんな内容なんだろうと思った人にオススメ。
417 :
大学への名無しさん:2010/09/17(金) 09:06:54 ID:KEQFxmt00
宣伝乙
高杉
昔NHKで講義放送してたけどね
ウチにまだあるかな…
長岡の本そんなにいいかなぁ・・・
悪いとは思わんが別に絶賛するほどのものでもないような
421 :
大学への名無しさん:2010/09/17(金) 14:19:20 ID:VIB1dYNi0
>>414 60点で合格だから今のやり方でいいと思うけどな
駿台では 50分で黒大数の問題二題解いて解説する感じだからね
あとは安田 亨の 東大数学ででもやれば伸びるのでは
こちらは月間大数系だけどね
長岡サンのは厳密過ぎる所があるから参考になるかもよ
422 :
414:2010/09/17(金) 15:07:16 ID:5UoWB9jUO
>>421 確かにあれは点あげるにはさぞ効率良いだろうなぁとは思いました
ただ、鉄緑過去問10年分を演習を兼ねて年度別にやりたい(解説も良いと思いました)ので…
やはりまず黒大数は仕上げるべきですね
ただ、パズルを解くような力(東京出版のはこういう問題解決のテクニック/スキルを身に付けるのには良いなとは思いますがキライ…)が付きにくいので焦ってしまう…
確かに60点取ればいいんでしょうけど、将来的なことを考えるといまやる価値があるのは数学くらいだと思っているので、出来れば80点くらいとって受かりたいです
黒大数と駿台のテキストが同じと聞きますが、駿台の通常授業ってずっと分野別なんですかね?総合演習は東大対策としてもかなりいいと思うんですけど、各章の問題と入試問題にはかなりギャップがあって黒大数だけで解けるようにはならないと思うんですよね…
423 :
大学への名無しさん:2010/09/19(日) 21:50:17 ID:yPaOSS5TO
一月程で本質の研究を3冊V・Cまでを2回ザッと読んだがわかりやすい。
丁寧なのがいい。
これからあと2〜3周ガチでやりこむ予定だ。
仕事と妻子持ちなのもあるし来年度に再受験の予定だが気が楽になったわ。
やりきったら相当自信つくと思うよ。
>>420 研究で難関大いったて報告がないからな、このスレで
普通に大数かチャートやるほうが無難だよ
東工大行ったやつからもらった旧カバーの研究使ってるよ
早慶の理工系全部通ったやつも研究マニアだった。まあそいつは標問も使い込んでたみたいだけど
>>424 ネット上でだけど、脅威受かった人なら知ってる。
研究やった人でね。
その人が勧めてたから研究をやり始めたなあ。
427 :
大学への名無しさん:2010/09/20(月) 02:59:53 ID:dfHOEuK00
>>422 まず黒大数やってから、極選発展/スペシャル/最高峰/突破口/発見的解決法(だっけ?)あたりを見てみたら?
個人的ないちおしは数学発想ゼミナールかな。どマイナーだがwww
黒大数こなせば、あとは己の才能を信じて問題に対処するだけだよ
これでわかる数学とマセマ合格!を終えた二年生です。
「問題は解けるけど、機械的に覚えた解法を当てはめてるだけ」
という感じで、応用がきかなさそうです。
例えば、三角不等式を解くのに単位円を書いて直線を引いて、とやる
作業の意味もわからず問題集で書いてあった解法を機械的に使ってる
というぐあいに。
私のような人間は本質の研究をやると効果があったりしますか?
よくそれで勉強続けてこれたな。そんだけの忍耐力があるなら何でもできる!頑張れよ
本質の講義のCD-ROMって、
iTunesをインストールしたり、
プレイリストを作成したりと、
結構面倒だね。
ハードディスクにコピーしないとCD-ROMのブーン、ブーンって、
回る音が気になって集中できなかったわ。
本質の講義のフォルダのファイルをクリックして、
CD-ROMから直接再生させてるの?
話し長すぎて聞くのやめたわ
研究やったほうが早いよ
>>429 俺も昔マセマ(はじはじから+110まで)やったけど結局記述模試とかでも点数とれなくて偏差値は55切ってた。
ところが、研究を使い始めて、ちゃんと公式の意味(証明も)理解したり、問題へのアプローチを自分で考えたりしてるうちに、65超えるようになったよ。
まあ俺は数学超苦手だから今標問で演習積んでるけどね。
今から思うとなんで俺マセマやってたのかな?って感じだよ。
高校数学ではあいまいに片付けられてしまうところを
マセマはごまかす (お金払って買ってくれた受験生をバカにしている)
研究は高校生にわかるように説明 or 大学レベルなので高校生の認識としてはこれくらいで十分です と断ってくれている
>>434 確かに文系のIAIIBだけでも
数I:17時間
数A:10時間
数II:32時間
数B:11時間
合計:70時間
1日1時間で70日、2時間で35日かぁー。
レベルを考えるとちょっと時間が掛かり過ぎなような気がするね。
別に講義形式のテキストでやってもよかったように思える
みんな研究終わったら次に何やった?
宮廷文系志望なんだが極選実戦→極選発展→過去問
で行こうと思ってる
てか研究の後に標問とか1対1って必要なのか?
そんなにやる余裕ないだろう。受験科目は数学だけか?
極選、ましてや発展は東大だけでいいような
ていうか極選は東大意識した問題集だよ
再受験生ですが、教科書+ガイドよりも本質の研究3冊のほうが中身が濃いみたいで
しかも安価ですよね。
教科書+ガイドの代用としては使えませんか?用途が違いますか?
文系で研究使うならその後の問題演習には何がいいの?
研究のあとに1対1薦めるやつって研究まともにやってないんだろうなって思う
,ゞ`:⌒> '':´ : : : : : : : : : :`:丶 、
/: : /´: : : : : : : : : : : : : : : : : : : : :\
/: : / : : : : : : : : / : : : :ィ : : }: : : : \: : :\
_/: ; :〃: : : : : : : : : :/ : : / |: : ∧: : i: : : : : : : :ヽ
`¨7/ /ヘ : / : : : : / /: / l: :/ ト、 | : : : : : : : : ',
':{ ∧: : :/ : : : : / / :/ ,:/ | l|\: : : ヽ : : :
{ :〉l : ヽ l: : : : :/: :l :/ 〃 !、:| ヽ: : : : : : :、
}:| | : : : |: : : : |: /j/ー‐=/″ j゙'=j‐- ': : :i: : :、: \
ノィ |\ : l: : : : |/ ,斗ミ:、 ,斗ミ、 ' :/: : : } `¨
| |: : ヽヘ: : : :| ん:::::ハ ん::::j 〉 j/: : : ;′
lJ: ;ヘ{ ヽ : | Vーク ト-ク ′/: :i :/
V ヽ \:、゚ `¨´ `¨´°/: /j/ まともにやってないって言われた……
\.__ """ ' "" ハ:/
_ヽ
/7T\ ⌒ ¨ ノ
x< ̄¨''ー-‐イ:::::{ ヽ 丶 、 <
/:::::::::::::::::::::::::::::|:::::::l \ `7´l\` ̄ ̄ ̄`:.、
/:::::::::::::::::::::::::::::::|:::::::ハ \ / V::\:::::::::::::::::::::,
l::::::::::::::::::::::::::::::: |:::::::::::ヽ _X__ |::::::::ヽ ::::::::::::::::i
/ :::::::::::::::::::::::::::::::|:::::::::::::::ヽ / {二} ヽ j:::::::::: 〉:::::::::::::: |
,′::::::::::::::::::::::::::::::::\::::::::::::::V /j | l ヽ V::::/:::::::::::::::::::|
. {:::::::::::::::::::::::::::::i::::::::::/:::::::::::::Vリ人| } /::::\::::::::::::::::::::l
研究のあとに傍用薦めるやつって研究まともにやってないんだろうなって思う
448 :
大学への名無しさん:2010/09/24(金) 00:54:46 ID:fK5D3OT00
だから、研究じゃ何かと初心者には取っつき辛い面があるから、素直に講義→1対1で行けと小一時間
このコースの方が無駄がないし、精神衛生的にも色々と捗るぞ
いきなり何の話してんだお前は
東京出版のものは長岡氏のものとちょっとズレてると思うんだが
高1から研究をシコシコやっていけば東大京大受かる
>>446 時間があって、色々なタイプの参考書読んだり解いたりしたいんなら、
研究+1対1も良いと思うよ。
ただ現役生はそこまでの時間を取れない気がするけど。
俺の憂ちゃんに話かけんな
憂ちゃんは青チャートを1回で全部覚えそう
. i、 ____ / 人
,. :―-+ヽ_. . . . : : : : : : : : : : : : : : . . / `Y´
`>:::::;xく: : : ; : : : : : : : :.Λ: : : : : : :ヽ、. /
. ∠: : :/!ヽ: : : /: : ::/: : :,: / '; . : : : : : 、ヽ、 / 人 人
j: ::/j: !: : :゛ ./ : : /: : : i:/ '; :l : : i: : : :ヽ : .、 `Y´ Y
|: ハ: : ! : : : :|:, :_:ム: -:/!' ';j,.;-:+、: l : :i ̄ ` 人 人
`.|: i: : : : : : !:{ : l l: :/ | i| ';: :!:` |: , ! `Y´ `Y´
l: : : : : : : :||i : l !/ l_ |_ ';: !l: :|: |:| ―――――――
. | : : : : : : :|:ハ :! .x=f=ミ、 _j-=ij、l: :!:ハ|
V: : : : __ ,!| `Wr-' i ,i_)` Y' |
ヽ: /´-、';l { 之__.ノ 之__.ノ |
ヽ! (`} ' 、
ゝ_ ゛_ l いや覚えるでしょ。フツー
. //:::::::::ヽ ノ、
/::::::::::::::::::::::::`ゝ=.._ , _...イ::::::>...._
ハ:::::::::::::::::::::::::::::::::::::::::>ニ7:::/::::::!::::::::::::::::::::::::::>:..__
!:l:::::::::::::::::::::::::::::::::::::::::::::::::::::`>.-、---、:::::::::::::::::/ ̄ ヽ
なんで解法の話題が皆無なの?
研究しか持ってないかられふ
あうあうあー
講義のCDとiPhone,iPod touchの相性が何気いいな。イヤホンいらずだし。
講義ってレベル帯的には真剣模試偏差値でいうといくつからいくつくらいまでですか?
どうでもいいけどレベル帯ってかっこ良いな
どうでもいいけどレベル帯ってどうやって使うんだ?
俺の紅蓮具象(パイロキネシス)は荒くれでな……
そのせいでこの辺りのレベル帯の中にゃ、俺に歯向かおうってやつはいなくなっちまった
ああ、疼く。紅蓮具象がささいている。……早くお前を喰らいたいってなぁ!!
京大or阪大志望の浪人です
現在研究→実践までやりました。
次にプラチカか発展に移ろうと思うのですが、どちらの方が京大向きでしょうか?
アドバイスお願いします
理系の方?
オレは京大文系志望だけど研究、実践まで何周もして今発展やってるけど若干難しいかなと感じる。
文系プラチカはサクサク進む
467 :
464:2010/09/27(月) 19:19:41 ID:XYHyPENMO
文系です。
問題数の面でプラチカに劣るのでどうなのかなと思いまして。
468 :
大学への名無しさん:2010/09/27(月) 19:46:46 ID:PvnHOhrj0
名大、東北大、阪大 のどこか志望の理系現役生です。
TA
黄チャート メジアン
UB
黄チャート メジアン 本質の研究
VC
青チャート クリアー 本質の講義 標問
って感じで、ばらばらぐっちゃぐちゃに所持してるんですが
やはり本質の〜シリーズが一番やる気出るんですけど、
講義は時間かかるからここらでやめといて、全部研究で揃えて、問題演習は標問に行こうかなと思ってんですがどうですか?
極選シリーズの方がいいんでしょうか?
>>466 代ゼミのマーク模試は1A、2B両方とも9割前後
代ゼミ記述は71
河合、駿台、大学別の模試は受けてないから分からん
>>469 良かったら研究と極選の使い方・学習法教えてください
解法って神参考書じゃね?
これ使わない奴は損してるわ〜
研究にはかなわない
研究のVCの最後のCのところは手抜き過ぎないか?UBと同じ値段で200ページ薄く、
IAと同じページ数で300円高いという・・
前2冊で内容先取りしてるからVCで語ることが無くなったんじゃないかな?
VCは一番早く読み終わったよ
UBの半分以下の時間しかかかってないと思う
研究終わったら何やればいいの?
なんですぐ上で語られてる内容の質問をするのかね。馬鹿なのかね。
もしかしたら研究終わる頃には多少賢くなって察しがつくかもよ。
極選も良いけど、黒大数おすすめだよ。
>>477 研究→極選よりも
研究→黒大数がいいってこと?
研究、極選は神の書
しかし凡人には更に演習が必要。そこで標準問題精講だ。はっきり言って解説の質は糞だが、これ以外に適当なレベルの演習書がない。
480 :
大学への名無しさん:2010/10/02(土) 23:42:23 ID:ry0HEH+Q0
研究章末までものにしたらあとはホントに東大京大過去問で考える訓練つづければいいっしょ。あの問題はそのレベルだよ?
まぁスタ演かやさ理を流し読みも解法習得の意味でいいけど
>>471 解法はいい本だけど研究はカス、教科書のほうがマシ
研究と解法は全くベクトルの異なる本だろう
てか研究と解法を批評できるほどにまで使い込む時間有ったのか、すげえな
ただでさえ研究の問題レベル大したことないのに解法なんて俺はやってらんね
解説の量も質も圧倒的に研究が勝ってるだろうし、なんで解法にこだわるのかわからん
研究のVCってなんであんなに高いんだ?3冊の中で一番薄いのに
VCは購買層が基本的に理系のみになる(需要が減る)から、前2冊と同じコストをかけて、
かつ同じ値段で売ったら1商品あたりで見込める利益が減るでしょ。
それを避けるために単価を上げて調整してるのでは、と予想。
そうだよ。発行部数のせいだよ。
大学入ったら教科書の高さに閉口するよ
値段に見合った、もしくはそれ以上の価値があると判断したら買えばいい
「高いんだから良い本に違いない、読み潰してやる」くらいに考えるべき
需要だ利益だなんて切ないこと言うなよ。。
>>481 名大志望なんですが
2Bも研究と過去問で大丈夫ですか?
Bだけでも1対1やろうか迷ってます
もう少し自分でできる範囲があるので、一ヶ月ROMってそれでもまだわからなかったらまた来ます。
ありがとうございました
784 名前:大学への名無しさん [sage] :2010/10/03(日) 00:24:59 ID:SJQ5Bork0
研究のUBが難しくてワロタ
ぜんぜんすすまねえよ・・・・・・。
TAの印刷は濃くて紙質もいいが、UBはちょっと印刷が薄いな…
俺だけ?
>>487 研究スレじゃ難関大に受かったて聞かない、君が受かって報告してくれ
492 :
大学への名無しさん:2010/10/05(火) 20:41:38 ID:tlp227EY0
どなたか、教えて下さい。黒大数U(第7刷)P219.[B.418]の問題です。(注)X二乗=(X)^2と表現します。
質問:下記の解答でAの判別式を考えたのに、@の判別式を考えない理由が分からないのです。
@の判別式を満たすことを解答に書かなければならないと思うのです。
問題:Y軸に平行な軸を持つ放物線で、放物線Y=(X)^2と異なる2点で直交するものをすべて求めよ。
解答:Y軸に平行な軸を持つ放物線をY=a(X)^2+bX+c (a≠0) とする。
2つの曲線がX=αで直交する時、a(α)^2+bα+c=(α)^2 かつ (2aα+b)・2α= -1
すなわち (a-1) (α)^2+bα+c=0 かつ 4(α)^2+2bα+1=0
2つの曲線が異なる2点で直交するための必要十分条件は、Xについての2つの方程式
(a-1) (X)^2+bX+c=0 ・・・・・・@
4(X)^2+2bX+1=0・・・・・・・・ A
が、異なる2つの実数解を共有することである。
まず、Aが異なる2つの実数解をもつべきことから、
a≠0 かつ (b)^2-4a > 0・・・・・ B
が、必要で〜(以下略)
どうぞよろしくお願いします。
>>492 持って無いからわからんけど
最後に十分性の確認してない?
494 :
大学への名無しさん:2010/10/05(火) 22:44:33 ID:+dzwJsM60
>>492俺の黒は新しいから、記述はかわってるかもしれないが、
結局1の方程式と2の方程式が同値になるような値を考えるんだから両方の判別式とっても、2のみ(あるいは1のみ)を考えても全くいっしょ
495 :
大学への名無しさん:2010/10/06(水) 00:27:14 ID:xR97MhZZ0
質問何だけど、研究1Aの問3-13の式がわからん。
だれか一つずつ計算の過程書いて
496 :
大学への名無しさん:2010/10/06(水) 00:29:59 ID:5kSNUhdc0
フォーカスゴールドやってたら他の問題集がゴミに見える
>>495 答えてやりたいがおまいの書き方では何が分からんのか分からんのだが
ひし形の面積は左上の三角形が4個分あるよーってだけだし、
あとは普通に2次式を平方完成してるだけだし
499 :
大学への名無しさん:2010/10/06(水) 01:02:56 ID:xR97MhZZ0
>>498 あれって単に対角線×対角線/2じゃだめなの?
>>499 別にひし形の面積の出し方なんてどうでも大丈夫だよ
501 :
大学への名無しさん:2010/10/06(水) 05:11:21 ID:DBcUlfNU0
>>493 「十分」の言葉はありませんが、Bが成り立つ事を確認しています。
これが、十分性の確認なのですね? 気が付きませんでした。
そのために模範解答が、しっくり来ていませんでした。
ご回答を下さり、どうもありがとうございました。
>>494 「@とAが同値なるような値を考える」→「だから一方の判別式でかまわない」
この関係が、私の頭の中で成立できていませんでした。
教えて下さり、どうもありがとうございました。
繰り返しになりますが、
>>493,494さん、お答えくださり、どうもありがとうございました。
>>502 大丈夫だと思いますけど
xの変域を条件に加えてあげて、グラフも書いてあげると良いと思います
最大値、最小値に言及してしまうより、根拠をグラフにして、
グラフからSの範囲を求めたほうがすっきりすると思うからです
ず、ずびばぜん……
(´;ω;`)
研究1Aの章末問題44なのですが、
問題文は
「2次方程式 x^2+ax+a=0 が2つの実数解を持ち、
その絶対値が1より小さい。このような定数aの値の範囲を求めよ」
というものなのですが、解答では「重解を許す」と書いてあります。
問題文が2つの実数解を持つように指定しているのに、
解答で重解を許すというのは納得できないのですが、
何方か説明していただけないでしょうか。
よろしくお願い致します。
>>506 普通、重解も2つの実数解であって、その2つが同じ数を指したものと考える。
「2つの異なる実数解」と言ったら文字通りの意味で重解は含まないが、
単に「2つの実数解」と言ったら重解の場合も指す。
親切な場合は、「2つの実数解」という言葉に「ただし重解も含む」といった文句を添えることもある。
>>507 >>508 ありがとう御座います。納得できました。
確かにD>0を使う問題には「異なる」という文言がありました。
これで安心して眠れます。
研究UBのP208の
(2)4頂点が与えられたとき…点P0を結ぶ線分によって四角形が掃かれる
とあるんですがこの掃かれるってどういう意味なんですか?
図からして分けるって意味でいいんですかね
>>510 君は箒を使って掃除をしたことが無いのか?
512 :
大学への名無しさん:2010/10/09(土) 22:54:02 ID:YC4pg+b1O
>>511 ごみが掃かれたら集まる?
四角形が集まる?
513 :
大学への名無しさん:2010/10/09(土) 23:14:32 ID:3r3KE9IdO
描かれる
514 :
大学への名無しさん:2010/10/09(土) 23:21:05 ID:YC4pg+b1O
>>513 集まることで四角形が描かれる
という解釈でよいですか?
むしろ綺麗に整地した砂場に
竹ぼうきで模様を描くってことだな
516 :
大学への名無しさん:2010/10/10(日) 00:21:55 ID:FV8M8WPH0
箒が一時間で一部屋分の面積を掃いた、っていったらわかるでしょ?
図形が通過した領域みたいなもん
同経が単位時間あたりに掃く面積とかいうけど確かに独特ないい回しだよね
このスレで最高峰への数学へチャレンジをやり込んでる人いる?
517 :
大学への名無しさん:2010/10/10(日) 07:24:04 ID:YUUPO2CLO
>>514 難しく考えてるな
B=P0のときPはAB間を動いて線分ABを描き
更にそのP0が線分BC上を動いて…って感じ
518 :
大学への名無しさん:2010/10/10(日) 14:00:56 ID:D0xcZ+8JO
研究UBの例題129の(2)で
なんでπ<2θ<3/2πの範囲は考えていないの?
tが全ての値を取るなら第三象限のことも考慮すると思ったんだけど違うの?
tが常に正だからy座標は常に正だろ。式からして
それにtanは周期がπだから最初に-π/2<θ<π/2ってかいてあるだろ
その条件がどっからでてきたのか俺にはわからん
523 :
大学への名無しさん:2010/10/13(水) 03:00:46 ID:Z+SOmsuS0
えっ 長岡って東大理3なん?
524 :
大学への名無しさん:2010/10/13(水) 11:59:23 ID:ay2yoGjZI
/ ̄ ̄ ̄ ̄ ̄ ミ
/ ,――――-ミ
/ / / \ |
| / ,(・) (・) |
(6 つ |
| ___ | / ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
| /__/ / < なわけねえだろ!
/| /\ \__________
研究 例題136のNotesの3について何ですが・・・
このベクトルの式はどうしてこうなっているんですか?仕組みがわからない・・・
あとベクトルにsinとかcosが掛かってるときは物理みたいに向きを考慮した上で実数倍するんですか?
まあこのやり方はたまたまベクトル(2、1)(−1、2)が同じ長さでしかも直行してるから
使えるだけで実用性はないんじゃないかね。なんでこうなるかはベクトルaとbに実際代入してから
展開してみれば問題文と同じになることがわかるだろ。
cosθ×ベクトルaってのはPからベクトルaに垂線を降ろした点をHとすればベクトルOHのことだよ
sinθ×ベクトルbも同じ理由で垂線を降ろした点をMとすればベクトルOMのことでしょ
だからPの座標はベクトルOH+OMになる。でもこれはPがたまたま円上にあるからいえるだけで
例えばベクトルbが2bになってたらもう使えないんじゃね?
一次変換の知識があればこれはベクトル(cosθ、sinθ)が原点を中心に実数倍されて回転する
ある行列をかけたものだとわかるんだけど、それをベクトルだけで解こうとしてるんじゃないかね
そいつが地雷じゃないか判断するのに球速以上はやくみえるタイプかそうじゃないかは
結構いい判断材料だと思う
そういう意味では澤村は地雷の可能性は相変わらず高いと思う
超誤爆
525マルチはいかんぜよ
研究VCの246ページの37の(2)で、
I(m,n)=n/(m+1)・I(m+1,n-1)
=n/(m+1)・(n-1)/(m-2)・I(m+2,n-2)
=…
=n!m!/(m+n-1)!・I(m+n-1,1)
とありますが、最後のところの分子がn!m!になぜなるのかわからないので教えてもらえないでしょうか
いや、分母分子にm!かけてるだけだろ
分母はm+1からはじまってるだろ
ああ、わかった
ありがとうございます
534 :
大学への名無しさん:2010/10/16(土) 19:55:23 ID:7vv2A37F0
本質の研究2Bの例題121ですが、xの範囲が 0< x < π/2 なのに、
どうして答えがx=α+2nπになるのでしょうか。αだけが答えだと
思うのですが。
もし問題文が「sinx=2/3となるxの値をα(0<α<π/2)とおくとき…」と
なっていたなら理解できますが…。
どなたか教えて下さい。
535 :
大学への名無しさん:2010/10/16(土) 20:53:44 ID:7vv2A37F0
すみません、分かりました。
自分で投稿しておいて、自分で自己解決して、お騒がせして本当にすみませんでした。
この 0< x < π/2 というxの範囲は、sinx=2/3という式に対して設定された定義域でなく、sinx=2/3となるx(何個もありますよね)につけられた定義域なのですね。
よく分かりました・・・!
ありがとうございました。
本質の研究のあとに天空への理系数学やると最高だな
対極的な参考書であるがゆえに、うまい具合に研究で足りない部分を補える
整数問題もちょうどいい感じで扱ってるし、
確率、漸化式、ベクトル、極限、微分、積分、二次曲線で標準問題以上での定石を学べる
実践的に定理・定義をどう使うかや、分野ごとの定石なんかが研究では言及してないからね
研究で基礎をじっくり固めて、天空で入試で必要な考え方や知識を身に付ける
あとは過去問や適当な問題集やれば終わり
東大京大除く総合大学であれば医学部でもこれでいけると思う
ちなみに、1対1もやったけどアレはだめだ
不必要なテクニックが多過ぎて本当に大事な部分が見えにくい
まずは、もっと大局的に問題を捉える視点、汎用性の高い考え方を学ぶのが先決
1対1は個別的な問題が多過ぎる
もちろんそういうことができるようになった人にはすごく良い本なんだけどね
何を勘違いしたかいきなり1対1やり始める人が多い
逆に言えば、研究は1対1が狭い範囲の問題を考えるのに対して、抽象的というか
かなり大局的な視点から書かれてるから、研究も大事な部分が見えにくいのもまた事実
しかし、森を見て木を見るというように、まずはそういう視点から学んでいくほうが力は付くし、
大事な部分というのもやがて必ず見えてくる
イメージとして言えば、大きいものから小さいものに徐々にフォーカスしていく感じ
先ほど挙げた天空はその中間あたりの位置付けになると思う
そういう意味で研究→天空を勧めたわけだ
538 :
大学への名無しさん:2010/10/18(月) 00:08:04 ID:1HG8vQT+0
そういう意味で研究→天空を勧めたわけだw
ようやく2冊を終えたばっかりの受験生が偉そうにいいよるわw
実際どうなんかな?
極選より価値あると思う?
入試数学の思考法(駿台)やられた方いますか?
問題の作り、レベルは極選実践・発展と比べてどうでしたか?
うるせぇな
研究の1Aは30回は読み込んだのに定期テストでさえ死んだ。これは解放暗記にはしれという長岡先生の啓示?
数学ちゅうのはウンウン唸って考えて、面倒がらずに手を動かして計算せな、自分のものにならんのよ。
>>543 山本先生
駿台時代はお世話になりましたw
物理の本は最初は薄いのにしとけって言われてましたね
受験目的じゃなくて趣味で本質の講義やってるんだけど
1A〜3Cまで終わったら本質の研究に行くのがいい?
個人的に黒大数やってみたいなーって思ってるんだがどうだろう
本読む感じならやっぱり研究かな
でも趣味ならまぁ好きなほう読んでください
俺が研究勧めてもやっぱり頭に黒大数のことが浮かんでくるだろうと思うし
両方買って読み比べてみるのも良いんじゃないですか?
黒大数はもう問題集でしょ。
最初の導入部分は参考確認程度にしかならない
なるほどありがとう。
実際そこまで言うほど黒大数に興味はないから研究でもいっかな
数学読本ってのと本質の講義+研究で悩んでたんだが、後者にして正解っぽいわ
でも、肝心の理論の部分は講義と研究でかなりダブりがある気がするんだが
むしろCDがついてる分、講義の方が分かりやすいとも言える
問題を解くことにあまり興味なく、深く理論のみを追求したいのなら大学数学に手を出すしかないような
本質の研究と青チャートワイド版を持っている高一ですが
どのように進めていったらいいでしょうか
青チャを日常学習に
研究を休日じっくりやっています
>>551 質問の仕方ぐらい覚えたら?
お前の素性がわからん以上アドバイスのやりようがない
>>551 じゃあそのまんまでいいんじゃないか?
個人的にはどっちか片方づつやった方がいいと思うけど
554 :
大学への名無しさん:2010/10/27(水) 01:16:51 ID:XHeStq8h0
青茶いらんだろ
「本質」がわかれば「網羅」する必要はない
555 :
大学への名無しさん:2010/10/27(水) 02:00:45 ID:C5AOhyQrO
はぁはぁ…ングッ に興奮する
しねーよwww
声に萌えんな
内容に萌えれ
557 :
大学への名無しさん:2010/11/11(木) 17:14:36 ID:fgxabocB0
旧帝医志望の高2で本質の解法がもうすぐ3周し終わるのですが
本質の解法の後に本質の研究をやるのは非効率でしょうか?
解放やったなら研究は読むだけでも良いかもね
解放だけでも合格点取れるように出来てるらしいので、
一度過去問でもやってみるのは如何でしょうか?
本質の解法の後に本質の研究をやるのは非効率では無いですよ
研究今日からやるわ
いろいろやったが、なんかうやむやな部分があるから苦手なとこからやってく
今更wwて感じだが、やったる
日記はブログでやんな
まあまあそんなに堅苦しいことは言わず、暖かく見守ろうよ。
せっかくやる気を出してこれから頑張ろうとしているかさ。
じゃあ馴れ合い板でやれば?
563 :
大学への名無しさん:2010/11/16(火) 17:26:37 ID:hs3TE/xgO
とっつきにくいからかもしれんが、こんなに黒大数が過少評価というか人気ないのは異常としか思えない
実際、高踏的過ぎじゃね?
本質の解法は、最初にやるときはフーザーモアの欄とかは無視してはだめですか?
自分で考える
567 :
大学への名無しさん:2010/11/19(金) 01:13:24 ID:BFsGZCYy0
>>563 確かに過小評価は納得いかないが、いい本だから人気がないのでは?
だって、高校生の半数は数学で落ちこぼれているのだから。
568 :
大学への名無しさん:2010/11/19(金) 01:17:35 ID:zt+gXMO3O
まだ研究とか学生自己満本やってるやついるのかよww
すみません。
本質の解法2Bに【格子点の個数】の問題はあるでしょうか?
大きい書店でも置いてなくて中身を確認することができないのでよろしくお願いします。
結局
>>567のような低脳信者が長岡氏の評価まで下げてるわけだ。
高校生用の参考書なんぞ、できない奴にわからせてやることが第一目標だろうに
あんな高飛車な本の何処に必要性があるんだか。
誤魔化しの無い本質を知りたければ大学の教科書でも読めばぁ?
中学生で杉浦の解析入門や佐武の線形代数学を読んでた奴、知ってますけど。
黒大数(笑)
必要性があるなんて誰が言ったんだ?
誤魔化しの無い本質を知りたいなんて誰が言ったんだ?
あんた突然なにいってんの?
>>572 中学から線形代数入門(斎藤)、解析概論(高木)読んでたのは確かに同級生にはいたよ
ただ、そこまでいかないまでも、
もう少しごまかしが少ない高校数学を学びたい
という要求に答えるのが黒大数なわけでしょ
まあ、売れても年に数千部くらいだろうけど、それでいいんだよ
昔の「必修物理」的な感じだね
「物理入門」はもっと読者が多いだろうからね
575 :
大学への名無しさん:2010/11/26(金) 03:04:22 ID:pUEUWeSE0
中学で大学レベルの教科書とかそんなに珍しい話でもないだろうに
まあ1学年の0.01%くらいじゃない。
これを珍しいと思うかどうかは人によるが。
>>577 0.01%だとすると、全国でもせいぜい学年で200人w
俺の中学だと、学年で200人くらいだから
そんな奴は0.02人くらい
50年に一人の逸材だw
>>578 頭悪いな。
まず全国に1学年は120万人ぐらいだから、0.01%だと120人くらいね。
で、そのほとんどが有名私立中高一貫校に集中していると推測されるから、
もし君の学校が灘や開成や筑駒であるなら、1学年に数人いても不思議はない。
地方の公立中学校であればまさに50年に1人いるかどうかだろう。
数学で専門書を読むと言う事は行間を埋めるってことだよ。
中学生が幾ら読んだふりをしても無理だろ。
>>579 頭悪いな。
>まず全国に1学年は120万人ぐらいだから、0.01%だと120人くらいね。
そらそうだ。ゴールデンセブンって知らない?
>で、そのほとんどが有名私立中高一貫校に集中していると推測されるから、
>もし君の学校が灘や開成や筑駒であるなら、1学年に数人いても不思議はない。
そりゃそうだ
>地方の公立中学校であればまさに50年に1人いるかどうかだろう。
灘開成筑駒に集中してるなら、それ以外はどうなるかよーく考えてみよう!
まあね。公文にだって小学校低学年で微積の「計算」できる子が大勢いるわけだし。
583 :
大学への名無しさん:2010/11/27(土) 10:04:53 ID:WJwXaP8xO
いつもこのコンテクストだと「ろくに理解してないくせにww」みたいになるが、個人的にはこの風潮よくないと思う
オッサン達のこの雰囲気のせいもあるだろうが、今の日本の学生って小さく収まりすぎてて意欲的に先のこと読み漁ってるこがあんまいない気がする
多少間違ってても意欲的なのはいいことだろ
>>582 計算だけなら、微積だって行列だってゲームみたいなもの。
ルールを把握する能力があればできる。
585 :
大学への名無しさん:2010/11/28(日) 01:13:16 ID:Vb+8FOL50
>>572 書き込みの内容をよく読みもしないで低脳呼ばわりするなんて馬鹿の典型w
参考書なんて商売でやってるんだから、
一般の参考書は全国の高校生を救おうなんて考えてないよ。
>>567 で言っていることは、真面目に勉強したいと思ってる高校生
向けにいい本を書こうとすると、絶対数が少ないから売れ行きは
それほど上がらないということ。
それに、おまえ長岡先生の本読んだことないだろ。
本質の研究も黒大数も高校向けの参考書で、高飛車な本でも
なければ大学での数学を紹介している本でもない。
それを高飛車と言ってるおまえが低脳だな
長岡を擁護している割には、主観で口汚い言葉で人を罵倒しているために、結果として、
その著作までが敬遠され、その名まで汚されることになりうることには思い至らないのか。
それは、擁護者が攻撃している長岡批判の中でもとりわけ中傷的なものと同程度のものである。
痛いのは長岡信者であって、長岡本人の印象は悪くならない、と言う向きもあるかもしれないが、
痛い信者のために本人の印象まで悪くなるという風評被害は、実際問題、往々にしてある。
私が長岡の著作について言及することは避けるが、上のようなことを心に留めておくべきとは申し上げたい。
587 :
大学への名無しさん:2010/11/28(日) 23:40:06 ID:ug0xrgvF0
>>586 中傷してるのは君の方じゃないのかなぁ
評価する意見をすべて「長岡信者だから」と無視するのは乱暴だと思う
そもそもどこへのレスなんだ?
研究1Aのページ227の例題86の研究1゜がよく分からないのですが
xが存在することはxの値が出ることや、図から明らかだと思うのですが
θによってxの存在が確かめられる理由がよく分かりません
(2)もcosαが値として出てるのに、ACが求まるかどうかを調べる理由がわかりません
何方か研究1゜の意味を教えていただけないでしょうか
質問の意味が分からないけど、こういうことかな。
(1)でいえば、余弦定理を使うのだから、式中にxとθが出てくるのは当然。
方程式だけを解いていくと、解が複数出てくるときがある。たとえば2次方程式や連立方程式などなど。
だけど解は出てきても、問題の条件に合わせて解の取る範囲をこちらで考えなければならない。
1゜がいいたいのはその部分。
今回の問題で言えば、xは辺の大きさを表すからx≦0にはならないから、x>0の範囲内で、
また0゜<θ<360゜(四角形だから)より、−1<cosθ<1(=|cos|<1)の範囲内で考えるようにってこと。
(2)は三角形の面積の公式「S=sinA・b・c÷2」の公式を使うがためにcosAを出したまで。
あなたの質問に対する答えになっていなかったらごめん。
研究UBのP544の体積の話が理解できない。
なんでV´(x)=S/h^2x^2なるの?
592 :
大学への名無しさん:2010/11/30(火) 22:46:03 ID:H3mrWCKK0
研究UBのP552 例題198で、0<a<9 の仮定よりx^2-6x+9-a=0
になる部分がよくわかりません。どなたか教えてください。
>>590 V'(x)=lim_[Δx->0] ΔV/Δxは小円錐の底面積であり、
それは大円錐の底面積Sの相似比の2乗比S*(x/h)^2に等しい。でどう?
本質の講義のVCやった人いる?
感想聞かせてー。
>>596 暗記数学批判する人はたいてい暗記数学が何たるかを理解してない
だからいつも議論は平行線
598 :
大学への名無しさん:2011/01/20(木) 02:09:40 ID:gZ2FY6cRO
非ユークリッド幾何学か
599 :
大学への名無しさん:2011/01/23(日) 13:35:57 ID:zoNI3BrO0
数学1からまた勉強してて本質の研究とカルキュールやってんだけど、この後の演習って何がいいんだろ?
やさしい理系数学とか?だれか極選やった人とかいる?ちなみに東大理1志望
9 名前:名無しさん[] 投稿日:2008/02/23(土) 02:07
論理に繊細ではない人はあまり使っても吸収できない。
例題や解答以外のところをこまめに、へーとか思いながら読むような人には良い。
本質やって極選の標準・発展やった方が良いよ。
著者が同じだから連動してる。
それと極選の標準編やると、論理的に微妙に曖昧だったようなところがあぶり出される。
意外にヘンなところで間違えたりする。
それくらいが終わったら新数学演習行けばいい。
13 名前:9[] 投稿日:2008/02/26(火) 04:32
>>11 標準編ではなくて、「実践編」でした。失礼しました。
実践編の問題の「難易度」はかなりバラバラです。
ただ受験生があまり考えないようなところをさくっと突いてきます。
例えば y=x+1/x で、y≧2 のすべての実数値をとることを証明せよ、とか。
最大・最小の問題は良くあるけれど、こういうのは少ない。虚を突かれるようなところがあります。
過去ログより以下引用
前スレより、東大向けプラン
本質の研究→極選実践→過去問・弱点傾向把握→大数分野別(マスターオブ整数・微積分基礎の極意など)
終わったら、「新数学スタンダード演習」などで演習。
まずは、「研究」を何回も反復し、ほぼ完璧にすること。
プランで悩んでる奴は、半年で研究3冊を章末も含めて何回も回して、その後極選実践の解法を自由にアウトプットできるようにして、
整数対策にマスターオブ整数やればいいって。
受験は数学だけじゃないんだぜ?
マセマはじはじ→青チャート→1対1→チェクリピ→やさ理→…なんて奴よりは遥かに効率的な学習プランだと思うぜ。
TAUBは、場合の数・確率がほとんどありません。また図形もない。
それらは発展編の方に多いです。
けれど、方程式、不等式、実数の存在条件などなどを
視覚化して捉えようという作業はかなりやられています。
VCの実践編は定義から考えさせるようなものが多いですね。
TAUB、VCいずれも発展編までやって全体性をもつと思います。
発展編は入試の標準レベルも含みますが、やや難くらいではないかなと思います。
『本質の研究』と同じコンセプトですから論理的にがっちり構築したいと
あまり思わない人には「なんだこれ?」となると思います。
逆に理詰めで勉強したい人は非常にいろいろな点で吸収できるものがあると思います。
研究→1対1やってもいいけど、赤例題・章末Aと難易度も解法も結構被るよ。
「逆手流」とかに興味があるなら、1対1ではなくてもショートプログラムや突破口でもいいと思うし。
演習書に選ぶなら、章末レベルの問題集がいい。(もちろん、この時点で赤例題までは完璧なことが前提。)
おすすめは、極選実践編・インテンシブ10整数・微積分基礎の極意。余裕があったらショートプログラム。
研究のあとに一対一やるとしたら、BVCだけでいいと思う。マジで。
あ、あと確立の整数くらいはやったがいいかも。
基本的にそれ以外は研究の内容で事足りる。(もちろん正松Bまで)
わざわざ難易度が結構かぶる一対一を全範囲をやる必要はない。
研究が終わったなら、まずは過去問だな。
そのあとは頻出分野の強化+問題演習。強化に使うのは一対一でも大数の分野別でも
好きなのをどうぞ。
問題演習は新スタ演、理系数学入試の核心の発展でないほう?なんかが良いと思う。
603 :
大学への名無しさん:2011/01/23(日) 23:50:12 ID:zoNI3BrO0
サンクス!!
何やっていいかまわりに聞ける人いないから助かった
604 :
大学への名無しさん:2011/01/24(月) 22:04:57 ID:sGDVhBke0
誘導されたので来ました。
誘導もとの引用です。
本質の研究と標準問題精講を持ってて
研究をちゃんと読みながら例題を解いていってんだけど(章末は飛ばしてる)
二週目は例題をさらっとおさらいして章末をやろうと思ってる。
そしたら標準問題の出る幕が消えちゃう気がするんだけど
標準問題はどういう役割の本?
俺はインプットタイプだと思ってるんだけど
そうなら乱雑に難易度だけで問題が配置されてる研究の章末をやる前に標準問題を一回やるべきかなと思うんだけど。
みんなはどういう使い方してる?
>>602 を見る限り標準問題はやる必要はなさそうですね。
一応研究を章末までやって、標問は頭で解けるかどうかの確認で一周するくらいでいいですかね。
志望校によるとしか言えない。
606 :
大学への名無しさん:2011/01/25(火) 12:20:41 ID:LVUNv8Nd0
>>605 地方国立医学部です。
なら、標問やれってことにもやらなくていいってことにもならんと思いますけど。
みんな研究どのくらいのペースですすめてる?
1日昨日の復習+3、5問
なんだが遅いかな?
608 :
大学への名無しさん:2011/01/25(火) 13:59:35 ID:LVUNv8Nd0
>>607 研究って問の数で進めるような本じゃないだろ。
どの分野までやるか区切りつけてやればいいんじゃない?
地方医で問題が簡単なとこなら、研究→標問→(極選発展)→過去問
でいけるはず。
難しいとこなら、標問とばして新スタ演やハイ選なんかをやった方がいい。
>>31-32 とか見て選べばいい
610 :
607:2011/01/26(水) 12:00:04 ID:TmT9OLEFO
>>608 そうなんだけど、一章とかに10問くらい例題がある章とかは1日で終わんないんだよな
3Cまでやると半年以上かかっちゃいそうで心配になるw
611 :
大学への名無しさん:2011/01/26(水) 22:09:22 ID:8OU0GYyU0
>>610 恐ろしいほど読むの遅いな。
現代文の速読からやろうか
「どのくらいのペースでやったらいいか」とか「みんなはどうか」とか「終わるまでどれくらいかかりそう」とか
この手の「トロい」生徒って、長岡さんがマジで嫌うタイプだよね。
>>612 長岡はその場で問題を見て即興で問題を解きながら解説する講師だったからな
勉強しなくてもデキるやつが好きなんだろうね
614 :
大学への名無しさん:2011/01/27(木) 17:36:55 ID:R4n0CGDv0
ってか研究の章末って例題から明らかに難易度飛躍してるよね?章末Bとかもはややる気もしない。
そしてとくに3Cは例題が少ないからなおさら章末厳しく感じるんだけど、俺が例題の理解不足なのかな。
やはりチャートか標問のような問題集で解いて慣れる方が性にあってんかな。
615 :
大学への名無しさん:2011/01/27(木) 22:05:45 ID:xsvqCxL00
パターンを網羅したチャートシリーズを潰していった方が安心じゃね?
本質の研究は寧ろ指導者向きで受験生がやるなら半分趣味でやれ。直接成績が上がるわけではない。
と知り合いの家庭教師バイト東大生が言ってた。
>>616 趣味でやるくらいじゃないと楽しくないよね
まあ、程度問題だけど
618 :
大学への名無しさん:2011/01/28(金) 08:11:46 ID:6cuMK3qL0
>>617 まあ確かにその通りなんだけど、
合格点をクリアーするのが第一の目的なんだから、
一通りパターンを網羅していないのは困るわけで、
その点、本質シリーズはどうなのかなと心配なんだよな。
本質で賄えないなら一対一をやればいいじゃない
620 :
大学への名無しさん:2011/01/29(土) 07:30:03 ID:i6JFOyxu0
やべえ!
amazonで本質シリーズのまえがき読んでたらちょっと感激して欲しくなっちまったよ。
621 :
大学への名無しさん:2011/01/30(日) 00:45:14 ID:KABiGCXHO
数UBのP382例題137
A+B+C=180゚よりの次の式なんですが
どうやって考えてるのか教えてください
622 :
大学への名無しさん:2011/01/30(日) 00:47:31 ID:KABiGCXHO
忘れてました本質の研究UBです
このスレって、それとなく保全されてるんだけど、
やってるのは本人なんだろうな…
本人乙
UBの例題83の3番の解法って2番が成り立つって事を示さないで使ったら本番ではアウト?
やっぱり直線の切片を考慮にいれなきゃダメなのかなあ
本質の講義の各講義の最後10秒はまとめるのうまいな
本質の解法のあとの演習はどの本がおすすめ?
極選しかなかろう
本質の研究と、数学ライブ講座や本質の講義みたいな音声付属系に違いはあるの?
最近研究1Aを始めたが理解するだけで手いっぱい
例題も赤になるとてんで解けないんだけど
最初はこんなものなの?
それとももっと下の参考書をやった方がいい?
つ本質の講義
633 :
大学への名無しさん:2011/02/08(火) 00:45:06 ID:rwCMf1zPO
>>631 例題は例を示してるんだから解かなくていい
章末は解いてね
634 :
大学への名無しさん:2011/02/08(火) 07:14:23 ID:niC/LxQm0
本質の講義をさらっと読んでみたけど、二重根号のやり方書いてないね
本当の初学者には向いてないんじゃない?
あれは発展じゃないの?
元々旺文社が撤退した検定教科書をベースにした本だから、
検定外の二重根号のはずし方が載っていなくても仕方がない。
チェバ・メネラウスの定理や
正射影ベクトルもない
無くても導入としては困らないけどね
その辺は20年前の課程ででも検定外だったかと。
二重根号のはずし方は検定内だったけど。
639 :
大学への名無しさん:2011/02/08(火) 19:54:22 ID:2hPkBTYE0
本質シリーズとチャート式(白黄青)の違いを分かり易く教えてくれ。
本質の解法、本質の演習、黄チャート、青チャート。
この四つはレベルこそ違う物の導入部分は既習を前提にまとめだけ載せ、
あとは例題と着眼点、復習のための練習問題、章末総合問題を集めた演習書の性格が強い。
白チャートは初学者のために導入部分を強化し、未習の生徒が教科書代わりにゼロから始められるようにしたもの。
本質の講義は上にもあるように検定教科書を音声によるレクチャー形式にしたもの。
本質の研究はある程度知識のある人を対象に、さらに知識を広めるために理論部分にページを割いた物。
入試のためだけにしか数学を使わない人には無駄かも。(その上に黒大数がある。)
白チャートも意外に到達点が高く、それなりの入試問題で演習したいなら黄色や青は白との重複が多く無駄になる。
その上に赤チャートがあるがそれよりは問題数の絞られた一対一などを使った方が良い。
というわけで個人的にはチャートは白しか買う価値なし、本質は研究しか買う価値なし。
>>640 分かり易い説明ありがとう。
数学が不得意で迷っていたけど、
まずは白チャートを徹底的にやり込んでみるよ。
642 :
大学への名無しさん:2011/02/20(日) 17:23:38.16 ID:dnjSRdC1O
長岡氏のCD付き参考書では予備校の講義の代用にはならんか。
643 :
大学への名無しさん:2011/02/20(日) 21:16:19.75 ID:lBD4pXFL0
数学オンチな俺でも本質の講義とてもわかりやすいです
ただ、今やってる正弦定理、余弦定理がなんだかいまいちわからない
何度もCD聞き直して理解するしかないですかね?
644 :
大学への名無しさん:2011/02/20(日) 22:40:10.60 ID:lBD4pXFL0
すいません三角比の定義を読み返したら普通にわかりました
645 :
大学への名無しさん:2011/02/25(金) 17:49:36.01 ID:ZBCdtbRnO
本質の講義は高認生の救世主となるか?
646 :
大学への名無しさん:2011/02/27(日) 02:54:22.04 ID:+vtVe4/B0
東工大脂肪で研究、極選使ってる人いるー?
647 :
大学への名無しさん:2011/02/27(日) 08:28:19.32 ID:h7YhCjDYO
学校の数学は赤点多数だった私立文系から理系難関への転換なので数学はマセマで独学です。
マセマで進研偏差値65くらいはいくようになりましたが、学校の授業をサボりまくったので、「問題はそこそこ解けるけど根本的な理解は出来ていない」「穴が開きまくり」という
状況になっていそうで心配です。
元は教科書であり、なおかつ音声講義もある本質の講義をやるべきですか?
研究TAの2進法云々のあたりがいまいち理解出来ないんだが
重要なところなんだろうか
他の参考書じゃあまり扱ってないよな
単元にもよるけど、研究例題→極選実践→研究章末がいい感じ
>>648 そういや見たこと無いな
標問3Cにその知識が少し必要な問題があったけど
>>648 数って何だろう?
10進法って何だろう?
みたいなのを少し掘り下げただけじゃね?
分かんないなら飛ばしてもだいじょぶだろうし
先生とか数学板とかで聞けばすぐ解決すると思う
てすと
あうと
654 :
大学への名無しさん:2011/03/07(月) 12:32:20.68 ID:5giWyNrSO
『本質の研究』ってあんまり現役生に認知されてないのかなぁ〜。青チャを鵜呑みにしてただ解法を暗記するってやり方の高校生が多いな。教科書的なものとして勧めるべきか?それとも問題集としてか?
問題集としてすすめるは絶対にダメ。
研究3Cの例題27(1)の解答、『xのかわりに-x、yのかわりに2-yとおくと元と同値な式が得られるので、
グラフは点(0,1)に対して対称である』が理解できません。
自分では、たとえばグラフをy=f(x)とおくと、(0,-1)だけ平行移動したグラフy+1=f(x)と
それを原点対称に移動したグラフ-y-1=f(-x)が同値なら点(0,1)に対して対称、ということを考えたのですが、
どのようにしてy=f(x)と2-y=f(-x)を考えるのですか。
研究IAの赤例題39と42
@かつAは@かつBと同値である
式変形するときいちいちこんな断りを入れないと部分点減点されるとかあるの??
未だに意義が理解できない
ふつうに@とAを連立して解いた結果をBとして話を進めていけばいいだけなのではないかと
>>657 いいんでない
ほかの問題集だとそこまで書いてないし
659 :
656:2011/03/10(木) 08:57:50.66 ID:wVCnc+Z30
すみません、y+1=f(x)を原点対称に移動すると-y+1=f(-x)になるのですね、勘違いしてました。
y=f(x)を(a,b)を中心に対称移動したグラフはちゃんと2b-y=f(2a-x)になりました、失礼しました。
y=f(x)を
(-a,-b)平行移動して y+b=f(x+a)
原点に対称に移動して -y+b=f(-x+a)
(a,b)平行移動して -(y-b)+b=f(-(x-a)+a)
よって 2b-y=f(2a-x)
Y=f(X)上の点(X,Y)を(a,b)を中心に対称移動した点を(x,y)とおくと、
(X+x)/2=a, (Y+y)/2=b
より X=2a-x, Y=2b-y
これをY=f(X)に代入して 2b-y=f(2a-x)
660 :
大学への名無しさん:2011/03/12(土) 16:24:44.07 ID:FYvfuSMfO
二浪の北大理系志望です
数学1A2Bに関してですが
センター試験までは本質の研究をがっちりやって
センター試験後にハイレベル精選数学を
やるというプランを検討しています
愚問だとは思いしますが
北大数学はこれでいけますか?
無理
662 :
大学への名無しさん:2011/03/12(土) 17:11:00.58 ID:FYvfuSMfO
>>661 ありがとうございます
やはり厳しいですか…
頻出分野だけ1対1等で補うという
かたちではどうでしょうか?
他の科目が得意なら、足引っ張らない程度には
なるんじゃないの。
二浪して未だプラン厨な時点で見込み薄だろ
665 :
大学への名無しさん:2011/03/13(日) 20:09:38.76 ID:IA2kLcOEO
本質の研究の例題から
直接数研の数学12AB入試問題集に
入ることってできるかな
666 :
大学への名無しさん:2011/03/15(火) 15:49:19.83 ID:mVfGtmkF0
確立がセンターレベルも危うい俺が糞得意になる参考書教えて。
大学への数学
の
解法の探求
668 :
大学への名無しさん:2011/03/15(火) 17:07:54.04 ID:+Tj3Gy3iO
>>666 細野確率の例題と練習問題を
やれば万全だと思いますよ
総演習問題はセンターだけならやらなくていいです
>>665は俺も例題だけやって1対1に入ることを
検討しているので気になります誰か回答をお願いします
669 :
大学への名無しさん:2011/03/15(火) 21:04:40.20 ID:mVfGtmkF0
東北大レベルの確立が解けるレベルまでいきたい。
670 :
大学への名無しさん:2011/03/16(水) 01:04:38.96 ID:UNe2lyI4O
671 :
大学への名無しさん:2011/03/17(木) 03:41:42.08 ID:hpvOnBUp0
本質の研究のみで十分
十分じゃないやつは頭が悪いw
研究の数列難しぎるwwwww
赤例題とかもうね・・・
本質の研究は受験合格の為には無意味ですか?
趣味的なものですか?
674 :
大学への名無しさん:2011/03/22(火) 22:27:14.50 ID:FWM2AYl60
何言ってんの
UBの例題132の研究のところで*を満たすθが2つになるときのaの範囲で
a<-2または1<a てどうやって求めるの?
誰か教えてお願いします
本質の研究ってマセマ以下だよなw
内容が薄すぎる。例題と章末簡単すぎる
本当に教科書という感じ
これ時間の無駄だわ。チャートでも傍用問題集でもいいから解きまくったほうが良い
お前の存在が無駄
>>673 趣味的だね
やっても効果ないとは言わんが
これやるなら予備校前期のテキスト200問ぐらい丸暗記したほうがおほど効果がある
本質の講義のCDはipodに入れることはできますか?
PCを長時間使える環境ではないので
681 :
大学への名無しさん:2011/03/24(木) 18:53:06.71 ID:RTcP8wMXO
>>673 島本啓介が「ただ、受験生が読むような性質の本ではない気がします」と書いてたはず。いや、荒川だったかな?
本質の研究について
682 :
大学への名無しさん:2011/03/24(木) 20:37:52.02 ID:0iMtPWyP0
>>682 ありがとうございます
本質の講義に付属しているCDはそのままコンポで聞くことはできないのでしょうか?
684 :
大学への名無しさん:2011/03/25(金) 00:06:20.52 ID:9ON3wzJ10
>>683 そのままコンポなどで聞くことはできません。一番はじめのページに記載があります。
音源を抜き出した後、別メディアに焼かないと無理だと思います。
ipodを使用できるならその方が楽だと思います。
685 :
大学への名無しさん:2011/03/25(金) 00:43:19.42 ID:jfI2V8K30
本質の講義を購入したのですが
「プレイリストにファイルを追加して再生する」の手順がわかりません。
詳しく教えていただけないでしょうか
687 :
大学への名無しさん:2011/03/25(金) 16:18:13.15 ID:YBYxWyDlO
自分でどうにかしろよカスが
仏の顔も三度まで
偏差値40ない俺でも本質の研究理解できる?
俺は学校の授業ほとんど聞いてなかったからマセマのはじはじを軽く読み流して
本質の研究やったけれどちゃんと読みこんでしっかり考えればいける
勉強とか数学とかに慣れてない人間にはこの作業がかなりつらいのだけれど。
ちなみに俺は偏差値35くらいしかない池沼だったけど次の模試は60までいけた
偏差値30半ばって中学の数学が危ういレベルだと思うんですが、中学の数学の復習はしました?
692 :
大学への名無しさん:2011/03/26(土) 10:20:13.82 ID:jm5LWKUi0
中学のときは数学はそれなりにやってたのでしてないよ
ていうか高校の数学って中学の数学の奥を深めたものだからわざわ学びなおす必要がないというか
本質のような丁寧な説明ならしっかり読み込めば0からでも理解できるわけで
わからないことがあっても中学の教科書とか参考書を見返せば十分いけるはず
693 :
大学への名無しさん:2011/03/26(土) 19:02:47.27 ID:Ph2bIecJO
本質の研究は、nimsel=上雲晴さんが大絶賛してますね。
ということは駄目ということだ
どなたか
>>675を教えてくれませんでしょうか・・・
>>695 (*)を満たすθの値が 0<=θ<2pi の範囲にちょうど2つ存在するような条件は、
方程式(2)が -1<x<1 の範囲に重解を持つか、または
方程式(2)が異なる2実解を持ち -1<x<1 の範囲に1つ、x<-1 or 1<x の範囲に1つあることであり
前者が a=-16/9 or a=0。後者が a<-2 or 1<a。
本質の講義U買ったのにCDが歪んでて再生出来ねクソが
698 :
大学への名無しさん:2011/03/29(火) 20:13:10.73 ID:HImgxawIO
取り替えてもらえよw
699 :
大学への名無しさん:2011/03/31(木) 23:37:13.13 ID:d5G0bce70
初学からのプランを教えて欲しいんですけど、
講義→研究(メイン)→極選→赤本
これが王道パターンでしょうか
700 :
大学への名無しさん:2011/03/31(木) 23:42:17.44 ID:Vdat1O3bO
プラン(笑)
今年から理転でVCを本質の研究でやってるんだけどこのあと1対1にいくかやさ理いくかどっちがいい?
文系の範囲は研究→1対1→文系プラチカでいけたんだけど理系の範囲は難しいみたいだしそのまま1対1にいける?
志望は京大工学部
本質の講義って音声無しで、そのまま参考書として使うことはできないのでしょうか?
あれは正真正銘の教科書です。
音声で解法説明するなら、参考書単体だと何の事か分からないという状況には陥らないのでしょうか?
705 :
大学への名無しさん:2011/04/05(火) 00:59:55.09 ID:IrYgW3IiO
>>704 まったくそういうことはない
本単独で教科書として完結したものに音声講義がついただけだから
読んでわからないところだけ聞けばよし
本質の講義ってそんなに分かりやすいの?どうやって音声で理解させるんだろう
本質の講義買ってきて早速聴いてみた
まったりペースだけど聴いてて面白い
まずはこれで教科書レベルの1A2B3Cを完璧にする
講義終わったら本質やって3周くらいやったら
試しに赤本解いてみて弱点把握してから極選か1対1やって完成に近づける
×講義終わったら本質やって3周くらいやったら
○講義終わったら研究やって3周くらいやったら
極選4冊やったらどれぐらいかかるかなぁ
1対1対応6冊よりは早く終わるだろうけどそれでもそれなりにかかるだろうなぁ
はぁ〜
710 :
大学への名無しさん:2011/04/07(木) 00:21:51.76 ID:gAbC6gK4O
本質の講義Aの後ろの長岡氏の本の紹介で
極選が大々的に紹介されていた。
上の人のように講義の後は研究等に入っていくものだ
と思いますが、さすがに講義から極選は無謀ですよね?
数学の勉強スレの流れだと本質の研究が不当な評価を受けそうな気がしたので,一応自分の本質の研究への感想を述べておきます.
自分個人としては本質の研究は良書だと思っています.…が,かといって数学の本質が語られている…とは思いません.
そもそも,本質とは何かもよくわからないのですが.
仮に,指導要領の上では説明しきれず曖昧にされているものが数学の本質と捉えるならば,
駿台の受験数学の理論の方が詳しく書かれていますし,
論理性がそれであれば,勿論本質の研究も他書に比べクドく扱ってはいますが,東京出版の数学を決める論証力のほうが詳しいでしょう.
正直な話,「本質の研究」というタイトルは嘘だと思ってもいいかもしれません.
勿論,これは自分の捉えかたであり,著者はそうは思っていないと思うのですが.
しかし,悪書だとも思いません.
寧ろ,初学者の為の本としては教科書よりも上だと思う位には良書であると考えています.
その理由としては,教科書で学ぶ事項を高校範囲を逸脱せず深く説明し,
かつ初学者が疑問を抱くような点についてコメントがなされている,ということなどが挙げられます.
正直な話,受験数学の理論はとても初学者のために書かれた本だとは思えませんし,
普通に大学で扱うようなことも扱ったりしているため,一回授業などを受けた人か,数学がよほどできる人向けだと考えられます.
しかし,本質の研究はそういった初学者にとって厳しく感じされるといったことが殆どないにも関わらず,かつ教科書よりも深いところまで扱っています.
故に,数学に興味がある高校生にとって,挫折することなく数学がはじめて学べる本としては最高の一冊になるかと思います.
ただ,自分を含め,「高校内容で説明できないところは大学に入ってからの楽しみにしろ」ということに不満を持つ人も少なからずは居ると思いますが.
また,上でもあったように同値性についてや,ベクトルは初学者にはちょっと難しいかな,とも感じたので,そこは注意してください.
ただ,本質の研究が万能な本ではないということも述べておきます.
自分は授業を一切聞かずかつ塾にも行っていなかったので,
問題演習をする機会がなかったため,問題演習は問題集のみ,という形だったのですが,本質の研究の問題では少なすぎると感じました.
一応,本質の研究にも例題が載っていますが,チャートなどに比べ網羅度は遥かに劣るに加え,
例題に絡めて事項の解説などをしたりするので,本当に演習する問題が少ないです.
なので,この本以外で問題演習や定石を身につける必要があると思います.
個人的にはレベル・量的にも,解答がこなれているという点でも一対一が良いと思います.
所謂受験テクニックと呼ばれるものも,言ってしまえばただの定石なので,覚えて損はないと思います.(一対一は簡単なので,殆ど無いですが)
またもう1つの欠点として,数学を一回学んだ事のある人や,
初学者だけれど数学が凄くできる人には本質の研究が冗長かつ内容不足に感じるという点が挙げられます.
理由は,先ほど述べたこの本の性質からもわかると思います.
不遜な事を承知で敢えて言いますが,数学T,Uを学ぶ段階では数学の基礎も固まっていなかったので本質の研究で十分だったのですが,
数学VCを学ぶ段階では十分自分は数学ができる人間だったので,そのときは非常に本質の研究の中身の薄さに止めたくなりました.
逆に,駿台の受験数学の理論は大学の内容も交えて説明してくれるので,(特に数学VC)非常に充実していて,満足できました.
なので,本質の研究がどこがいいんだ?と思う人も居るのは普通だと思います.
良い本ではありますが,使用者は割りと限られてくる本にも思えますね.
以上長文ですが,本質の研究の購入を考えている人や,迷っている人の参考になれば幸いです.下手な文章で申し訳ないです.(句読点が多いですね...)
713 :
大学への名無しさん:2011/04/09(土) 06:41:49.08 ID:RiuS7VN6O
受験数学の理論って著者が早稲田だろw
数学読本かモノグラフにしとけよw
714 :
大学への名無しさん:2011/04/09(土) 09:56:17.93 ID:KzHqaSW+O
著者の出身大学を気にしたことは一度も無いな。
入学時点での学力が低くても、その後に努力した人は評価できるよ。
てか、問題を解く能力と人に教える能力は違うと思う。
それはそうと、「聴いてしまえばとっても簡単」シリーズはどういった位置付けなんだろう?
長岡氏の著書の中では内容が易しい+CD付きだから、初学者のための教科書代わりかな?
代わりも何も教科書です
716 :
大学への名無しさん:2011/04/09(土) 10:46:10.72 ID:I7gBxptV0
初学者が1年で数学を極めることを可能にした画期的入門書
講義→研究(&駿台カルキュール)→極選→赤本
>>713 それを言ったら
長岡の専門は歴史じゃねーかw
718 :
大学への名無しさん:2011/04/09(土) 14:10:06.18 ID:RiuS7VN6O
>>717 学史は一般に難しい分野だろ
放送大教授明治大教授だしな
720 :
大学への名無しさん:2011/04/10(日) 00:28:08.15 ID:Epkx4vxXO
学史は通りいっぺんじゃやれない
ままともな大学に受かったらわかるよw
>>711-712 要約すると
本質の研究は初学者向け、教科書よりも導入は詳しいしわかりやすい。(同値性についてやベクトルは初学者にはちょっと難しい)
だけど初学者じゃないまたは導入を必要としてない人には駄本
そういう人は1対1やれ。受験数学の理論もいいよ。
そういうことか?
722 :
大学への名無しさん:2011/04/10(日) 01:19:45.71 ID:mEgeX8oQ0
>>721 数学をよく知らんやつが書いた駄文だから気にスンナ派
723 :
大学への名無しさん:2011/04/10(日) 01:27:20.88 ID:mEgeX8oQ0
>>719 そういうことを言っているのは単なる馬鹿ですよって文だろw
お前みたいなやつなw
>>720 「数学者達」と「世間一般」に数学史は落ちこぼれがやる分野として見られてるって書いてあるんだがね
そしてそう見られてれば数学史には落ちこぼれが集まるわな
>>723 >そういうことを言っているのは単なる馬鹿ですよって文だろw
そんなことは書いてないなぁ
ここは大学教授よりも頭の良い人たちが集まるインターネッツですね
726 :
大学への名無しさん:2011/04/10(日) 03:39:05.65 ID:Epkx4vxXO
>>724 いるよなあこういう行間を読めない馬鹿w
>>726 見苦しいよw
>>719には確かに数学者達と世間から数学史は学問として見られてないと書いてあるから
それに対して寂しいとか数学史を認めてくれよって訴えしか書いてないね
現実を認めなくちゃ
というか数学者達に数学史は低く見られてる現実があるのに
お前らがまともな大学に入ったらとか言ったところで
只の戯言にしか聞こえないんだがね
728 :
大学への名無しさん:2011/04/10(日) 11:33:16.71 ID:klcD2eH70
>>727 どこをどう読んでも
>>719には
@数学史は価値がない的なことを言う数学者が全体の何%かいる
A高校で数学史的授業が設置されるときに、@のような意見だけが通って設置が中止されることがあれば残念極まりない
Bだから数学史について、「数学そのものとは違うから不要」VS「一般教育軽視の|彡昨今では必要な分野である」という議論が出てくればいいな
ということしか書いてないんだが、何を捻じ曲げて読んでるの?
729 :
大学への名無しさん:2011/04/10(日) 12:49:43.75 ID:nleyNe+IO
極選って内容薄くない?実践編しか見てないが
730 :
大学への名無しさん:2011/04/10(日) 12:58:43.41 ID:Ffisekck0
少ない問題数で数学の本質を総復習できると考えれば凄いと思わないか
できると考えればすごいが、できないから。
>>728 >@数学史は価値がない的なことを言う数学者が全体の何%かいる
これは数学史は落ちこぼれがやったり学問として見られてないと読める
>A高校で数学史的授業が設置されるときに、@のような意見だけが通って設置が中止されることがあれば残念極まりない
これは文字通り寂しいと読める
>Bだから数学史について、「数学そのものとは違うから不要」VS「一般教育軽視の|彡昨今では必要な分野である」という議論が出てくればいいな
これは数学史を認めてほしいと訴えてると読める
別に捻じ曲げるというほどの事はしてないだろ?
少なくとも
>そういうことを言っているのは単なる馬鹿ですよって文だろw
よりは捻じ曲げてない
733 :
大学への名無しさん:2011/04/10(日) 16:00:14.08 ID:nleyNe+IO
長岡の著書で使えるのは黒大数だけだな
研究クソ使えねぇ
734 :
大学への名無しさん:2011/04/10(日) 16:28:26.96 ID:cZyq3Mz30
>>732 > >@数学史は価値がない的なことを言う数学者が全体の何%かいる
> これは数学史は落ちこぼれがやったり学問として見られてないと読める
そう言う意見の奴が存在するというだけでそれが体勢かは書かれてない
→そう言うことを言ってる学者のほうがレベルが低いという解釈も出来る
> >A高校で数学史的授業が設置されるときに、@のような意見だけが通って設置が中止されることがあれば残念極まりない
> これは文字通り寂しいと読める
その辺の一部の学者の偏見だけで設置しないと決定されるのはおかしいので3の議論がされるのが望ましいと言ってるだけ
「数学史が認められない」のが残念なのではなく「一部の偏見で数学史が否定されること」が残念ということ。
違いが分からないなら国語的文章読解力が足りない
> >Bだから数学史について、「数学そのものとは違うから不要」VS「一般教育軽視の|彡昨今では必要な分野である」という議論が出てくればいいな
> これは数学史を認めてほしいと訴えてると読める
「認めてほしい」ではなく「一部の軽視する人間」VS「必要であるという人間」の議論が活発化されるのが望ましいということ。
> 別に捻じ曲げるというほどの事はしてないだろ?
> 少なくとも
> >そういうことを言っているのは単なる馬鹿ですよって文だろw
> よりは捻じ曲げてない
リンク先の文章には「数学史は数学者や世間には学問として見られていない」という内容は書かれていない。
お前の表現の仕方だと「数学者や世間に数学史を学問として見ている人間はいない」という全体否定の文にしかならない。
よって十分リンク先の文章内容を捻じ曲げている。
自分が捻じ曲げているのを指摘されたからといって他人も捻じ曲げてると逃げを打ってるのが
少なからず捻じ曲げをしているという負の意識に基づくものなんだろうね
/ ̄ ̄ ヽ,
喧嘩をやめゅてぇ〜♪ / 丶 / ',
ノ//, {゜} /¨`ヽ {゜} ,ミヽ
ふたりをとゅめてぇ〜♪ / く l ヽ._.イl , ゝ \
.ni 7 / /⌒ リ ヘ_/ノ ' ⌒\ \
l^l | | l ,/) (  ̄ ̄⌒ ⌒ ̄ _)
', U ! レ' / / ̄ ̄ ヽ, ` ̄ ̄`ヽ /´ ̄
/ 〈 / ', .n .| ・ ・ |
ヽっ{゜} /¨`ヽ {゜}, l^l.| | /)ノ |
/´ ̄ ̄ .l ヽ._.イl ', | U レ'//) ノ
/ ィ-r--ノ ヘ_/ノ ', ノ / ∠_
,/ ヽ rニ | f\ ノ  ̄`丶.
丿' ヽ、 `ヽ l | ヽ__ノー─-- 、_ )
. !/ ヽ、 | | | / /
/ !jl |ノ ,' /
.l l | | ,'
.| ・ 丶 ヽ | /
! ア!、, | | ,ノ 〈
./ ・ ./' ( ヽ_____ノ ヽ.__ \
/ ヽ._> \__)
>>734 ずいぶん捻じ曲げた解釈をするんだね
まぁお互いの解釈の違いを言ってても仕様が無い
本題に戻そう
>>719には
数学史は数学者達と世間に落ちこぼれがやる分野で低く見られてるという記述が確かにある
だが
>>718>>720の言うような
数学者や世間から数学史が難しいと見られてる記述はない
これからいって数学者達や世間から
数学史はレベルが低いと見られこそすれ
レベルが高いなどとは見られてはいないと言える
737 :
大学への名無しさん:2011/04/10(日) 17:06:22.34 ID:ywV5i57U0
>>736 こういうときはあると主張するほうがページ数なり行数なりを指定するべきだろう
740 :
大学への名無しさん:2011/04/10(日) 17:20:53.38 ID:ywV5i57U0
「意義が必ずしも十分に認識されているとは言い切れない」から落ちこぼれの学問とは曲解しすぎ
大学院まで行って研究してないと意味分からんだろうけど、研究者が少ないことそれ自体を
>これは数学史は落ちこぼれがやったり学問として見られてないと読める
みたいな捉え方するのは悪いけど高校生の浅い思考といわざるを得ない。
>>719みたいな指定のしかたじゃなくてその中の言葉そのものを示さないと、それこそ解釈上の問題になるよ
俺はお前の仮にも研究者を小馬鹿にしたその姿勢が気に入らないだけで
別に数学史が難しいなんて一言も言ってないんで証拠ほしいなら言った人に頼んでね
>>740 >「意義が必ずしも十分に認識されているとは言い切れない」から落ちこぼれの学問とは曲解しすぎ
あ、そう
俺は屁理屈に付き合うつもりないから。
>>738で岡本和夫って人は数学史の地位は高くないって意味で言ってると思うけどね
お前さんだって主観ではそう思ってるんだろ?
>
>>719みたいな指定のしかたじゃなくてその中の言葉そのものを示さないと、
これと
>数学史の研究は「昔のことを調べて勝手気ままなことをいう」, 「古い論文を読んでいるだけ」がすべて,とみなす数学者が, 全体の何パーセントがは知らないが, いるからである.
これ
>数学史はきちんとした学問でないから置かないとか、おちこぼれの救済措置として設置するといわれるのでは,
>俺はお前の仮にも研究者を小馬鹿にしたその姿勢が気に入らないだけで
それを言うなら
>>713の「受験数学の理論って著者が早稲田だろw 」ってだって
小馬鹿にしてるんでないかな?
ま、俺は他書のことなんてどうでも良いけど
>別に数学史が難しいなんて一言も言ってないんで証拠ほしいなら言った人に頼んでね
なるほど
お前さんは数学史はレベルが高いか低いか分からないって立場なわけね(どうせ主観では低いと思ってるだろうけど)
まぁ良いや
>>718は証拠を出してない、俺は出した
これだけで普通の人は数学史はレベルが低いと認識するだろうから
742 :
大学への名無しさん:2011/04/10(日) 20:38:34.31 ID:Epkx4vxXO
おまえってホント無知だよな
学生か?どうせ無名Fラン大学だろ
学史はそうとうムズいしその学問で一流の人間だけがやれる
まあ勉強して出直してきな
743 :
久留米信愛教師久保山希世子:2011/04/10(日) 20:40:16.59 ID:l1Hr5qM40
私は九産大卒です
九産大で虐めに合いリスカしました
今度九産大を訴えます
744 :
大学への名無しさん:2011/04/10(日) 22:25:29.35 ID:63VNmMyZ0
>>742 少なくとも何かしら研究してたらこいつみたいなこと言わんだろう
大学生でもなくちょっと数学できる程度の高校生が何を上から物言ってんだって感じだわ
746 :
大学への名無しさん:2011/04/11(月) 01:18:30.59 ID:1+QqIqHg0
人を罵る人間。
ああ、。。。
幸せになれるといいですね。
747 :
大学への名無しさん:2011/04/11(月) 03:38:08.84 ID:ewzNLoNyO
講義も研究も教科書のようなものなら、研究→講義は遠回りすぎるかな?
748 :
大学への名無しさん:2011/04/11(月) 23:58:41.30 ID:BeDBkC2hO
急がば回れ
749 :
大学への名無しさん:2011/04/12(火) 11:12:10.40 ID:m2ytrpmH0
本質の講義シリーズと
数学ライブ講座ってどう違うの?
さすがにggrksと言われるだろ
IAの問題39かな?
2元1次方程式でkが解をもたない時、無数にある時、唯一持つ時。
これ1文字消去でy消してもいいけど行列式でサクっと解くのはダメなのかなあ
@かつAがBと等しいとか書くの面倒くさい
ようするに2直線が平行な時、一致する時、傾きが異なり交わる時、って聞いてるだけのような気がする。
752 :
大学への名無しさん:2011/04/15(金) 20:16:35.32 ID:Eo2xlfCpO
研究UBの積分のところで、6分の1の公式を証明してるのに
その後その公式を使わないんですが
あまり使うべきではない公式ということなのですか?
753 :
大学への名無しさん:2011/04/15(金) 20:39:13.50 ID:XkJk6QeH0
意味ないから
754 :
大学への名無しさん:2011/04/15(金) 23:54:14.87 ID:Eo2xlfCpO
>>753 計算量を減らせるという意味では意味があると思うんですが…
あくまで検算で使うレベルなんですかね
センターでは絶対に覚えておいたほうがいい準公式
使えるところでは使ってると思うんだけど。
757 :
大学への名無しさん:2011/04/16(土) 18:17:52.30 ID:G5cBe+sp0
研究は講義における本質的な説明をカバーしていますか・・?
講義の復習を兼ねることができるでしょうか
ここで聞くより
自分で見た方が•••
高木貞二や杉浦光夫みりゃわかるけど、数学史が重要だという認識は
数学者の間でもある程度コンセンサスが取れてるよ。
どんな分野においても、歴史的な観点を導入しないとその分野の問題意識が
つかめないからね。
ま、だからといって長岡氏が数学史家として、或いは数学者として
立派な人間かということは分からない。
研究を読む限り、掘り下げが甘すぎるな。モノグラフのほうがいいよ。
研究が初学者に最適というのは同意。
研究を読む限り、掘り下げが甘すぎるな。(キリッ
↑
大学教授に向かって上から目線の2chネラーw
>>759 >高木貞二や杉浦光夫みりゃわかるけど、数学史が重要だという認識は
>数学者の間でもある程度コンセンサスが取れてるよ。
高木と杉浦の何処に書いてるのかUP
あと数学史が重要だという認識じゃなく
数学史が難しく一流の人間だけがやれるという論点じゃない?
>>761 数学史が学問として見られていない・重要ではないと
必死に訴えてたアホ上のほうで一匹がいたな
勝手に自分に都合のいい解釈ばかりした挙句
屁理屈は聞きたくないとか言って逃亡したみたいだが
お前ら数学史について語るスレとか作って他のスレでやれ
立てれないなら俺が立ててやるからこれ以上スレチな話題続けるな
>>762 ところで数学史が難しく一流の人間だけがやれるという
ソースは?
>>761 例えば杉浦光夫は現代数学史学会というものを立ち上げて、
リーマンの論文の翻訳などに携わっている(ちなみに長岡氏は共訳者)。
高木はいわずと知れた『近世数学史談』において、
歴史から色々と教訓を引き出しているでしょ。この本の解説は杉浦ね。
ただ、あくまで数学者から見て数学史研究が傍流というのは感じる。
>>764 根拠1.歴史を語るということそのものに内在する困難さ(歴史哲学の本とか読めばわかるよ)
根拠2.数学という人工言語に関する記述に要求される技術水準の高さ
これら2点をクリアできる人が世界中にどれだけいるか考えれば、難しさはわかるでしょ。
亜流でやっちゃう人とかはもちろん別ね。
てことでスレチ失礼。もう消えますね。
>>765 >ただ、あくまで数学者から見て数学史研究が傍流というのは感じる。
結局、数学史は真面目に研究しようと見られてないって事ね
あと根拠なんていう推論にすぎないものじゃなくソースを示して欲しいんだけどね
根拠なんかじゃ如何様にも言えるからね
それにウチの大学の教授は史学なんて科学じゃないって見下してたけどね
>>766 >
>>765 > >ただ、あくまで数学者から見て数学史研究が傍流というのは感じる。
> 結局、数学史は真面目に研究しようと見られてないって事ね
曲解乙
> あと根拠なんていう推論にすぎないものじゃなくソースを示して欲しいんだけどね
> 根拠なんかじゃ如何様にも言えるからね
お前の出したのも自分に都合のいいように読み替えただけの解釈だろうが
> それにウチの大学の教授は史学なんて科学じゃないって見下してたけどね
お前の教授の意見なんざ知るか
自分の身内の意見を根拠にするような奴と建設的な議論が出来るとは思えん
自分の大学に引きこもって数学史はクソだって喚いてろよ低脳
>>767 ところで数学史が難しく一流の人間だけがやれるというソースは?
>>719には確かに数学者から数学史は下に見られてるって記述があるし
さらに「数学史はきちんとした学問でないから置がない」「おちこぼれ」というハッキリしたフレーズもあるんだけどね
お前らいい加減にしろよ
ID:guyvtofg0
この基地外ちょっと前に数学勉強スレで暴れてた奴とそっくりだな
受動的にレスしてるだけだからとか言って決して謝らなかったゴミカス乙
>>770 わけ分かんないこと言ってないで
数学史が難しく一流の人間だけがやれるというソースは?
>>773 延々とスレ違いの粘着してないで数学板に行けカス
>>774 いいからソース出せばいいのに
なんで話をそらすかね
数学史が一流の人間だけがやれるなんてのはデタラメだったんだよ
そっとしといてやれよ
ス レ 違 い の文字が読めない奴がいるみたいだな
こいつマジで数学スレで本質の研究に粘着してた
「僕は受動的にレスしてるだけだから本質信者が悪い」
の基地外と同じだわ・・・文体からして同一人物だから仕方ないか・・・
あっちで総叩きにあった理由もスレ違いを延々と続けたからなのに
こういう奴はホント「僕は正しいから叩く奴がおかしい」って思考なんだろうな
お前らは本当面白いな
哀れな子犬が二匹ほどいるな
781 :
大学への名無しさん:2011/04/21(木) 03:03:02.49 ID:ajxj1Bh60
田西会館
782 :
大学への名無しさん:2011/04/21(木) 03:46:20.06 ID:undCGc18O
黒大数に掲載されている問題が一通り解けるようになったとしたら、どの程度の実力がついているのでしょうか?
>>782 基本パターンは網羅したんだろうね
それを使いこなせれば理三レベル
本質の研究の例題18
注: 〜f(x)を(x-1)^で割ったときの余りがax^+bx+cを(x-1)^で割ったときの余りになる〜
が理解出来ませんだれか解説できる方いませんか?
>>785 本質の研究といってもTAUBVCとあるからどれか書いておいたら?
>>785です
解決しましたありがとうございます
↑因みにUBでした以後気をつけます
高2、東大文U志望
講義の後、研究か解法どちらをやろうか迷っています。
研究は読み流す程度にして解法を問題演習として使う
この流れで問題ないでしょうか
講義のあとに解法が問題演習に使えると思うのか?
というかまだインプットする段階だろ
>>790 そうですね、まず研究を完璧にしてから時間もあるので黒大数に進もうと思います
本質の行列は糞
証明端折りすぎ…
793 :
大学への名無しさん:2011/04/27(水) 00:28:13.45 ID:/CfH4uu1O
あほか
長岡は線形代数の教科書も書いてるのに
さんざんオナニしたあげく斉藤読んでねっていう糞本だろ
講義の後に解法やっても普通にいけるだろ
だいたい解法もどちらかといえばインプット用の参考書だろ
講義は音声なしでも充分勉強できる?
自分で考えれば?
798 :
大学への名無しさん:2011/04/29(金) 20:10:59.68 ID:fx0TagvmO
ありがとう
その言葉信じて購入するわ
音声無しで講義とかただの教科書だよ
それなら研究の方がマシ
初学者なので講義の方が良いかなあと
教科書でも独習できると思うなら大丈夫だよ。
教科書ってのはむしろ正統なんだから、一度は目を通して欲しいし。
初学者ってだけでは
>>801がどういう状況なのかよく分からないけど、
大人なら読解力はあるだろうから大丈夫。
未習の高校生なら、分からないトコは先生に聞けるから大丈夫。
高認などのために勉強している10代で、本読むのが苦手なら他の講義調のが良いかもね。
講義読んで思ったんだけどさ、何で長岡先生のまとめた検定教科書は販売停止になったの?
旺文社も昔は数学の教科傍用問題集も売ってたけど、
教科書共々単に売れなかっただけでしょ。
へー
旺文社自体が教科書出版から撤退したみたいだからなあ。
旺文社模試なんて言うのもあってけっこう幅をきかせていた時期もあった。
鉄則とか基礎からよくわかるの時代だね。
あと昔は学研なんかも教科書出してたよ。
現在数学教科書出していてそこそこシェアあるのは数研、東書、啓林、実教、第一くらいだね。
一昔前の教科書と比べると今の教科書は見やすいし記述も理解しやすいね。
昔の教科書って読みにくかったの?
確か上野健爾が、小平邦彦の高校教科書が我が国の最高水準みたいなこと言ってた気がするが
本質の研究1Aなら8日で読み終わるってマジ?
やたら分厚かった覚えがあるんだが
810 :
大学への名無しさん:2011/05/05(木) 09:04:37.48 ID:IGla/ok50
本質の講義をやっている人いますか?
いたら、本質の講義のCD-ROMに入っているPDFはどうしている?
PDFは全部プリントアウトして、ホッチキスなどで留めて使用しているのかな?
数学UなんてPDF205ページもあるから、大変だね。
それとも、PDFはパソコンの画面で見るだけで、
プリントアウトしないのかな?
教えてください。
>>809 読むだけならもっと速く終わるよ。初学者なら知らないけど。
ちゃんと解くにしても、1日どのくらいの時間をかけるかで違ってくるでしょ。
自分が最初やった時は、2〜3時間/日くらいで2日で1章(論理と集合は1日)、2週間くらいかかったけど。
てすt
質問ですが、皆さんは本質の解法をどのくらいのペースでやってましたか?
◯問/日
>>813 1周目 5問/日
2周目 15問/日
3週目 30問/日
815 :
大学への名無しさん:2011/05/11(水) 18:02:48.39 ID:oH5tjieOI
>>810スマホとかPDFを読める機器を持ってるならそれに入れるべし
そうでない場合で外で勉強したいなら、紙にプリントしかないだろうな
816 :
大学への名無しさん:2011/05/11(水) 19:03:35.68 ID:IRFzDsll0
>>815 ありがとう。
巻頭に便利であると書かれていたipod touchは最近買いました。
ipodは今日、やっと何度も失敗したフィルム貼りに成功したところです。
とりあえず、ipodでPDFを見てみます。
iPhone持っててPDF見れるけど、勉強するときにはすごいやり辛いよ
小さい画面見つつバックライト点灯気にしながらはきつい
やっぱり勉強するならプリントが面倒でも紙のほうがいいと思うよ
書き込めるし
819 :
マルタ:2011/05/13(金) 01:45:31.37 ID:fCdFxWPP0
質問:
・高1・地方旧帝国大学(早慶)理系志望(できれば東大京大東工)
・英語得意(英検準1級取得)・現代文得意・数学苦手
高校は東大が毎年5人くらい
・学校採用で本質の解法
・母子家庭のため経済的に予備校は厳しい。入学金・学費は
高校バイト(初期費用)+奨学金+大学バイト(返金用に貯蓄)
で支払い予定
つづき
820 :
マルタ:2011/05/13(金) 01:46:42.55 ID:fCdFxWPP0
予定
@高1:4〜5月 →本質の講義TA+本質の解法TA(例題と類題のみ)
※本質講義は7日・本質解法は10日で終了して復習中
A高1:6〜11月→本質の講義UB+本質の解法UB(例題と類題のみ)
B高1:12〜3月→本質の講義VC+本質の解法VC(例題と類題のみ)
※苦手分野のみ 計算→カルキュール(駿台出版)
※苦手分野のみ 理解→わかりやすい中経出版シリーズ
821 :
マルタ:2011/05/13(金) 01:50:10.48 ID:fCdFxWPP0
C高2:4・5月 本質の研究TA(章末まで)
D高2:6〜8月 本質の研究UB(章末まで)数学1A2B極選50 実践編
E高2:9〜12月 本質の研究VC(章末まで)数学3C極選25 実践編
F高2:1〜3月 合格!マセマTA/UB/VC
マセマシリーズは2chで賛否両論あったのですが、
予備校に行くことができないので、「 受験数学 」の全体を俯瞰する
ために高2終わりで一度入れておきたいと思いました。
G高3:1対1シリーズを演習
英語メインと物理・化学を攻めに使って、
数学は守りに使いたいと思います。
そのため、数学は基礎やその問題の背景をしっかりおさえて
あまり、受験独特の数学パズル的な難しい問題はしない予定です。
この予定はどうでしょうか?
どうでしょうか、と言われてもそんな計画あまり意味はないでしょうね、としか。
大きなアウトラインを作ることは大事だけれども、高1のときに高3のときにやるものを考えても全く意味がないですよ。
本質の研究と解法をどちらもやるのは無駄です。
あと1対1は別にやらなくていいです。そもそも演習向けの本じゃないです。
マセマもやる必要を感じません。
それと、そんなにガチガチにスケジュール立てると終わらせることを優先させて肝心の内容が疎かになりますよ。
終わらせた解法の1Aはしっかりと身に付いていますか?
高1のときにはじっくりと時間をかけて基礎を勉強すべきです。
スケジュールにももっと柔軟性をもたせて、
インプットのあとには必ずアウトプットをしてください。
そんなプランを立てると高揚感が出て楽しいでしょうが、やる本を決めるのは今やってるものが終わってからです。
習熟度によって次にやるものは変わります。
何をやるか、なんかよりそのときの自分に適切なレベルのものをやるほうが遥かに大事です。
本質の講義を終わらした後は何の参考書をやればいいのでしょうか?
本質の解法
本質の研究数1Aの章末問題43についてなのですが、解答が−2 または 五分の-5√17になっているのですが、なぜ二分のではなく、五分のなのかがさっぱり判らないです。
解答ミスですかね?
俺の本質の研究IAにはt=−2,−5+√17/2と書いてあるが
>>826 即レス感謝
こちらの解答では-5√17/5と記載されてるからどっから/5が出てきたのかさっぱり判らなかったけどやっぱり/2ですよね
すっきりしますた
解答ミス恐ろしや…
828 :
大学への名無しさん:2011/05/18(水) 17:57:20.61 ID:fOuzbAP+0
本質の章末をやるのやめて、1対1をやり始めたとたんに問題がドンドン解けるようになってきた。
でも宮廷目指すようなやつですら1対1の解答の意味がつかめないっていうやつが結構いる。
にも関わらず俺はそんなこと一度たりともなかった。これは本質の研究を一通り読んだからなのかな?(例題は完璧にはしてない)
なんというか1対1はテクニックの寄せ集めだとか聞くが、そうではなく、地に足のついた基礎に基づく考えだってことが理解できる。
そう考えると、本質の研究をもう一度やり直したい気がしてきたけど、時間が掛かり過ぎるから、一通り導入部分を読んでいてなおかつ1対1を解いているなら極選をやれば研究読み直しに相当するかな?
そんなに時間かかるかなあ
問題かいつまんでやればよくない?
本質の研究2Bのp428、章末問題の55番なんだけど解答がいまひとつ理解できないんだが…
Aの真数条件が x-3>0 かつ kx-6>0 なんだから、
x>3 から kx-6 をプラスにするには k>2 とか必要だと思うんだが
求めるkの値の範囲は k<2 ってのが釈然としないんだよ
本が手元にある人だれか教えてください
831 :
大学への名無しさん:2011/05/19(木) 02:35:25.44 ID:4jrBhgMBO
832 :
京大・名大志望:2011/05/19(木) 08:13:29.15 ID:1BqEnC8f0
>>830 p418とp419をしっかり読み直せば分かるはず。
>>829 昨日の828です。
正直1対1と研究は見比べれば分かりますが、同じ考えに基づく解法を選択しています。
それで例題の数もほぼ一緒。例題の難易度は1対1は研究の赤がずっと続く感じです。(たまに黒レベルもある)
それでも研究を見直すべきでしょうか?
>>832 おお理解できた
サンクスファイブニキータ
834 :
大学への名無しさん:2011/05/20(金) 01:29:51.75 ID:ethoz5zQO
>>832 本質の方が上
赤チャと一対一じゃ比較にならん
もっと勉強しな
835 :
大学への名無しさん:2011/05/20(金) 02:47:15.80 ID:RLtUTnMj0
836 :
大学への名無しさん:2011/05/20(金) 02:58:53.00 ID:jIXrUqAsO
834きもwwww お前が勉強しな?wwww
837 :
京大・名大志望:2011/05/20(金) 09:47:11.88 ID:UM1buJUs0
まあ自分の中で7月入るまでは基礎をガチガチにするってテーマでやってるので
本質の研究をもう一度やり直すことにしました。
終わり次第、極選を確認して1対1をさらっと流したいと思います。
あと、ちょっと変わった感じなんですが、研究のTAだけ持っていません。
UBの勉強をしているときに研究に目が着いたので、UBVCを買いました。
TAを今からでも買う価値はありますか?
本質の解法を完璧にすれば、広島大学、千葉大学は狙えますか?
文系です
839 :
大学への名無しさん:2011/05/24(火) 17:16:57.44 ID:oXLI4m/g0
極選って一冊でIA IIBの範囲を扱ってるけど、これを網羅系の参考書として勉強するのは無理あるかな?
841 :
大学への名無しさん:2011/05/24(火) 18:15:34.14 ID:QyvHU/PsO
MURI
>>840 俺今やってるけどこれだけだと不安かな
実践は50問しかないし発展は43問だっけ
例題なしでいきなり問題演習だから網羅はできてないかと
実践は一通り勉強し終わってる人がざっと範囲の復習するのに使える程度だと思う
俺は1対1が薄いから併用してやってるよ
極選実戦で網羅系は絶対無理でしょ……。50問で網羅できてしまったら本質の解法とかなんなのってなるだろ。
1日4時間はやってるが研究1周目2ヵ月近くかかった
章末B以外は解き直しまでやってるんだけど1周目完璧にするより1周2週間でさっとやって何度も繰り返すほうが良いのかな?
>>844 最初はじっくり
二度目もじっくり
三度目もじっくり
やるんだけど三度目になるとかなり早く進む。結果的に早くなるのであって、早く済まそうと焦るのはよくない。
みんな研究の例題ちゃんと全部解いてる?
本質シリーズって全部やることを念頭に作られてる?
あんなに買ってたら金無くなるし
本棚一杯になるんだがw
研究だけでもいいのかな?
いい
演習足りなくね?
数学初学者です。
これでわかるで勉強しようと思っていたのですが、講義で代用できますか?
抜けなく基本をおさえることはできますか?
研究で漸化式の一般項を求めるときに特殊解ってのを使うんだお的な説明があるんですが
特殊解って何ですか?
853 :
大学への名無しさん:2011/06/10(金) 16:53:35.70 ID:zr5tiVx70
本文の例題で言えば、an=3という定数数列を出すことを指して言っているんだと思う。
阪大基礎工志望です
研究がもうすぐほぼ完璧になるんですが、次は何をやるべきでしょうか?
一応理系プラチカか極選を候補にしています
>>854 極選実践の1A2Bだけ持ってるけど、入試問題演習だとは想わない方がいい。研究の続編くらいな感じ。
問題演習を通して、研究と同様に基礎を分からそうとしてる。
要するに、プラチカとかとはまた別の存在。研究のノリを続けたいなら極選だし、
もう問題演習に取り組みたいならプラチカでいいよ。
個人的には章末Bまでやったんならやさ理でもいいと思うけど。
旧帝レベル行くなら解法と研究どっちがいいんですか 高一です
弟は空気なの?
本質研究数学1AのP223例題84(1)の解答が、BD=5/13 BC=35/13 と表記されていますが、正解はCD=56/13 BD=35/13 ですよね?
この本地味に解答ミスがちらほらあって、混乱するのが残念…。
いや、BD=5/13 BC=35/13だよ
いや、BC=7 BD=35/13だよ
BD:DC:BCは角の2等分線の比から5:8:13。
BDの長さは5/13×BC=5/13×7=35/13。
今ふと思ったけど、「BD=5/13 BC=35/13」の部分を、
「BD=5/13、 BC=35/13」と読み取っていないかな?
「BD=5/13×BC=35/13」の意味で書いてあるんだよ。
864 :
大学への名無しさん:2011/06/16(木) 22:23:30.75 ID:5rcjxQKrO
マセマはやめとけ。応用力がつかない。ただのゴミ。
865 :
大学への名無しさん:2011/06/17(金) 00:13:40.75 ID:eD5ynR3E0
京大文系志望です
今研究2bやってるんですが
この後、数学実戦演習をやろうと思ってます(11月ぐらいから)
1aは自信があるので、研究やらずにマセマの実力うpやろうと思います
ここで質問なんですが、研究終わった後に2bも実力うpやったほうが
いいですか?(解法暗記的に)
プロシードは奇跡的に偏差値64でした
>>865 必要ない。
章末までやれば分かるけど、ある程度の典型題は意外と網羅されてる。
小問の一つ一つまで頭働かせて解いていけば大丈夫。
868 :
大学への名無しさん:2011/06/18(土) 17:18:21.90 ID:0swUXZXy0
>>866,867
ありがとうございます
そういうことだったんですね・・・
念のため1aも研究で夏までこの2冊やろうと思います
低能死立の一つ慶応のSFCは日本人として人間として最低な奴らの集合体です
広島を揶揄して奴らはこういうレスを吐きました
受験生は1科目しか出来ないこのような無知無教養に成らない様に、国立大を目指して頑張って下さい
死立は国立落ちの敗者、もしくは専願の低能が行く所です
当然ロクな学生が居ませんし、知的欲求を満足させてくれる事はありません。
旧帝五官大に入れなければ人生の敗者です。
可哀そうな死立の人間が発する後悔と嫉妬の混じった怨嗟が2chでは溢れています
受験生はこれら低能を反面教師にし頑張って下さいね
>688 :大学への名無しさん:2011/06/13(月) 15:29:55.13 ID:iMQX+ZpO0
>ピカ毒が移るから一生広島にこもってろよ
>689 :大学への名無しさん:2011/06/13(月) 15:31:24.80 ID:+mJbXYAG0
>
>>687 >原爆ドームから出てくんな
>786 :大学への名無しさん:2011/06/18(土) 13:28:53.30 ID:fI76UOEO0
>ピ☆カ☆ドォオオオオーーーーーンンンンンンンン
>ケロイド毒毒毒ケロイド毒毒毒毒毒ケロイド
>ん?なんか死体くさくない?
研究1a、二次関数まではサクサク進んだけど図形と計量むずすぎ・・・
黒大数のいいところを教えてください!
>>822 に研究と解法どちらもやるのは無駄ってあるけど
時間あるなら絶対併用するべき
解法での扱いが弱いところを研究は確かに補ってる。ベクトルとか
逆も然り。
基本的な問題を疎かにしてハイ選やらやさ理やらに手を着けると痛い目見るよ
873 :
大学への名無しさん:2011/06/23(木) 18:10:55.79 ID:yvGwgSHK0
たとえばどの分野?
本質の講義終わらした後に研究やるのは効率悪いですか?
効率悪いわけなかろう。というか講義なんて勉強の前兆程度だぞ。
876 :
大学への名無しさん:2011/06/29(水) 18:41:42.34 ID:1JUhB51D0
講義の章末問題は黄チャートの重要例題レベルあると思うんだけど…
違うかな?
>>200みたいな意見もあるから、講義終わらした後に研究やるのは効率悪いかなあと
878 :
大学への名無しさん:2011/06/30(木) 01:41:17.04 ID:tgd0ocV6O
講義は教科書レベル
研究は参考書
研究の方が難度は高い
>>876 そんなくだらないこと言うならやらなきゃいいじゃん。やる気がないならどうせ研究やっても無駄。
やってる最中に「効率悪いかも」なんて思ってたら身に着くものも身に付かない。
講義に黄チャート重要例題レベルがあったとして、それが何なんだ?
お前はどうですか?と質問しといて、本当はやりたくない。って感じが出まくり。
880 :
大学への名無しさん:2011/06/30(木) 08:59:59.44 ID:tgd0ocV6O
大切なのは難度ではなく重要度
研究の問題は難しさではなく重要さや学習効果を考慮して選んである
独学でこれでわかるやった後に解法へ繋ぐつもりなんだが、講義や研究無しでいきなり2Bのみやるって無謀?
ちなみに1Aは赤茶やったけど、2Bになってもう少し丁寧な解説が欲しいと感じて本質に浮気しようと思ったんだが…
本質の研究3Cの章末問題の15の回答4行目
どうして微分すると
-f'(x)=〜
になるのでしょうか?どなたか教えてください
f(-x)をxで微分すると、項は全部-がつくようになるから。
それを-でまとめると、そういう風にあらわせる。
>>884 ありがとうございます
わかったような気がしてきました
もう少し考えてみます
僕の言葉が足りなかった。ごめんなさい。
たとえばf(x)=x^3+x^2+x+5だったとする。
f(-x)をxで微分したとする。
合成関数の微分より(-x)^3を微分すると(-x)'×x^3'=-1×3x^2=-3x^2
同じようにしてx^2は-2x、xは-1になる。
f(-x)をxで微分すると、-3x^2-2x-1になる。
上で書いた「項は全部−がつく」とはこういうこと。(合成関数の微分のため)
一方f(x)をxで微分すると、3x^2+2x+1になる。
よって、-f(-x)=f(x)。
一般性のない、具体例を出しての説明だけど許して。
研究ABの618ページ、章末70の解答見てるんだが
階乗記号の書き方が誤解を与えかねないんじゃないかと思うんだがアレでいいのかね?
2k!は2(k!)とか
(k+1)k!は(k+1)(k!)みたいに
カッコでくくったりした方が良いように思うんだが冗長か?
詳しい人教えてくれ
888 :
大学への名無しさん:2011/07/10(日) 16:41:55.89 ID:B4EZPkQKO
研究VC48ページの章末問題3なんですが
S0が定義されてるから
n≧1で
階差数列から一般項を出すときも
Σのところがn-1ではなくnということなんですか?
889 :
大学への名無しさん:2011/07/10(日) 18:32:27.81 ID:SgCKJGKlO
890 :
大学への名無しさん:2011/07/10(日) 20:13:09.96 ID:36/iX0W90
本質の研究数学T+Aの例題54です。
読んでいて疑問に思ったことがありました。
[問題]
f(x)=x^2-2x , g(x)=x^2+4x+10 とする.
(1)xはすべての実数値をとるとき,関数g(f(x))の最小値を求めよ.
[模範解答]
f(x)=tとおいてf(x)の最小値が-1であることからt≧-1…@
g(x)の対称軸が-2,最小値が6であることからg(x)にx=tを代入すると@より
最小値7(t=-1)…(答)
[質問]
最小値7のときx=t=-1ですよね。
f(x)にx=-1を代入すると3ですよね。
しかしf(x)=tとおいていますよね。
これって論理的に矛盾してませんか?
892 :
大学への名無しさん:2011/07/10(日) 21:39:28.91 ID:36/iX0W90
>>891 そうなんですけど、それは
f(x)=x^2-2x=t=-1からx=1ですよね。
だけど、g(x)=x^2+4x+10=g(t)=g(-1)=7となるんです。
これはx=-1としたということになりますよね?
よくわからない...
?
tはf(x)を置いたものであって、xを置き換えたんじゃない。
u=g(f(x))で、そのまんまだとu=(x^2-2x)^2+4(x^2-2x)+10ってなってめんどいから
f(x)=tと置くことでt^2+4t+10とわかりやすくするんだよ。
>>892 そんな考え方じゃ置き換え問題全滅だな
問題文の条件をしっかり理解してからもう一回読み直せ
その様子じゃ、長岡以前に仕上げるべき問題集が何冊もあるだろw
896 :
大学への名無しさん:2011/07/10(日) 23:08:44.49 ID:B4EZPkQKO
897 :
大学への名無しさん:2011/07/11(月) 11:41:12.89 ID:1wuhwPw80
>>886 ありがとうございます
その説明のおかげで理解できたと思います
具体例を作ることがこの問題は何故か出来ませんでした
自分は展開しちゃってたからこんがらがってよくわからなくなってたようです
>>886 すいません
やっぱり(-x)^2を微分すると2xになっちゃいます…
g(x)=x^2
f(x)=-x
として
g'(x)=2x
f'(x)=-1
より
g'(f(x))f'(x)=2(-x)(-1)=2x
となってしまいます
>>898 だってそんな合成関数の微分をしなくたって、
(-x)^2=x^2 なんだから当然だよ。
というか
>>886の説明が絶妙に分かりづらい。言いたいことは分からないでもないけど。
この問題で言えば、
y=f(-x) @
y=f(x)+2x A の連立方程式だと思えばいい。
まずはAを微分 y'=f'(x)+2 これはすぐに分かると思う。
次に@の微分について、
t=-xと置きかえると y=f(t) と置きかえられる。
これをxで微分すると dy/dx=dy/dt*dt/dx だから(これが合成関数の微分法)
dt/dx=-1 であることに注意すると、
y'=f'(t)(-1)=-f'(t)
あとはt=-xとして元に戻すだけ。
>>899 おー多分理解出来ました!
答えてくれたみなさんありがとうございました
MARCH理工志望の高3です
この前部活が終わり勉強に本腰を入れられるところです
自分でいろいろ調べたところ教科書が完璧と絶対的に自信を持つことができないので
導入が詳しく問題も良いと聞いた本質の研究がよさそだと思い書店で数1を見たところ
公式について詳しく書いてあるのに気に入り買ってきたので今からだと遅いのは充分承知していますが
夏休みは数学メインに使えますし本質の研究を相棒にやっていこうと思います
はじめて本腰を入れてやる数学が本質の研究の場合はどのように取り組んだらいいですか?
902 :
大学への名無しさん:2011/07/13(水) 18:57:28.49 ID:1mBxEKU1O
903 :
大学への名無しさん:2011/07/13(水) 19:02:22.16 ID:nxBTYKOh0
>>902 何が疑問なのか分からない
自明すぎて何の疑問も湧かない
>>902 公式丸暗記してるおそれあり。
たとえば第1項から第n項までn数列 a[n] があるとき、これの階差数列 b[n] の項は
a[n]の各項の「間の数」だけ存在する。
たとえば自分の指を見ればわかる。指を a[n]とすれば、指の間b[n]の項数は4になる。
つまり a[n]の項数−1 ということ。
ここで 数列Sn が 0から数えるなら、この数列の項数が n+1 になる。
これから1をひけば当然 n
もしこれの意味がわからないなら最初からやり直せ。
本質の研究のお陰で数学が得意になってきました
長岡先生ありがとう
>>904 項数で考える発想はありませんでした
自分は公式ではn-1≧1からn≧2になるんだから
n-1≧0からn≧1なのかなと
n-1の意味を考えてなかったです
確かに公式丸暗記ですね
ありがとうございました
極選発展って難易度的にやさしい理系と同ランクなの?
>>907 なんとも言い難い。極選実戦で難しい問題がやさ理より難しいときもあれば発展の方でやさ理より簡単っていうこともある。
あと、1対1では逆手流を「便利な技」として教えているが、長岡は当然のことではあるのだが「理解するのは難しいこと」として教えている。
数学の問題を処理する上での難しさより、数学的な意味としての難しさを長岡は言っているから、安易に比較はできない。
処理の難しさ(実際に入試本番でミスする可能性の高さ)で言うなら、やさ理の方が難しい気はする。
909 :
大学への名無しさん:2011/07/19(火) 20:00:33.78 ID:GJ73yVx/0
本質の解法終わったあとに1対1やってるんだけど、
問題のレベルが被ってて効率悪い気がする。
解法の後にやるのに良いのある?
>>909 志望大学の過去問。
解いていて、ミスが多くて点取れないとか、見ても解法がなかなか浮かばなくて答えを見たらなんだこれかよ!
ってなるのなら解法を復習。例題はちゃんと○×つけて、できなかったやつだけ次の週繰り返せばいい。
章末も同様に○×つける。ただし章末は○が2個つくまで繰り返すこと。
もしも、未知に近い問題を過去問に見かけるようだったら
やさしい理系数学がお勧め。これは中身を覗けば分かるけど、定石系の問題もあるけど、とくに難しめの有名問題や頻出問題を結構取り上げてて
これはある意味、初見では解くのが難しい問題を集めてると言える。
まあでも基本的に本質の解法はかなりレベル高いと思うよ。
数学は3Cまで一通り学校の授業受けてたら研究の問やらなくて例題から行っていい?
たまにある証明とかはやるつもりだけど、ここの人たちはどうしたのかな
そろそろしんすれかな
次スレは検索する人のこと考慮して
【長岡亮介】本質の研究・本質の講義・黒大数
でどうかな?
他の本は字数制限で入らないのでメインとなる3冊だけでも入れたい
勢い無いから、まだ立てなくていい
本質の講義の後は基礎問題精講でもよい?
基礎問題精講も良いけど数学ライブ講座に繋ぐのもありじゃないかな
場合の数・確率はハッ確で補う
手元に基礎問あるので基礎問やります。
確認できてよかったです。ありがとう。
本質の研究1Aの50P赤例題15で最後に「2と3は互いに素であるから」と論じているのがいまいちピンときません
アプローチでn自身を6で分類するのが普通の発想であるけど、
過程をかるくするために6=2×3から6の倍数=2の倍数かつ3の倍数とするのはわかります(つもりになっているだけかもしれないけど)
ただ6で割るのが自然と書いてあるのに2と3が互いに素であると論じているのが府に落ちません
例えばの話ですが20=4×5より20の倍数=4の倍数かつ5の倍数としてはいけないのでしょうか?
すみません、はやまりました
最後の例は関係なかったです
60=10×6より60の倍数=6の倍数かつ10の倍数としてはいけないのでしょうか?
30は60の倍数じゃないが6の倍数かつ10の倍数だろ?
922 :
大学への名無しさん:2011/07/29(金) 20:59:18.84 ID:BZRSSPEt0
>>919 互いに素じゃない場合だと最小公倍数など重複してしまうことがあり場合分けが煩雑になる。
たとえば60について6と10で場合分けすると30については重複して議論することになるし
そもそも6で割ったあまりと10で割ったあまりに基づき分類するとか超面道。
>>918 6の倍数を示すのに2の倍数かつ3の倍数を示せばすむって言ったら
そっちの方が多少楽なのはわかるよね?
だから2の倍数かつ3の倍数であることを示してる訳だけど
なんでそれで良いのかって言ったら2の倍数かつ3の倍数なものは6の倍数になるからなんだよ
ここまでは大丈夫っぽいよね?
んで互いに素ってのは公約数がないよーってのを言ってるわけ
10と6は2っていう公約数があるから60の倍数だけを表すってのが出来ないのさ
なんでかって言うと、2は2でも2でも割れるけど4じゃないでしょ?
ここで言ってるのは2で割ってさらにその商を2で割るっていうことを言ってるんじゃないってことなのさ
2で3回割れたら(2で割ってその商を2で割ってその商を2で割るって事ね)そいつは8の倍数だけど、
2でも2でも2でも割れるからって8の倍数とは限らないってことだよ
実際2は2でも2でも2でも2でもどの2でも割れるでしょ?
つまりさ、10でも6でも割れる数は60の倍数に限らなくて
10は5*2、6は3*2なんだから、5でも2でも3でも2でも割れる数のことを言ってるってことになるのさ
上で言ったように2でも2でも割れる数は所詮2の倍数どまりなわけだよ
だから10でも6でも割れる数は5でも3でも2でも割れる数って書きなおせるわけさ
そうすれば5*3*2=30でそ?
互いに素って書くのは上で書いたみたいに2でも2でも割れるけどなにか問題でも?
っていう馬鹿なことは言いませんよ、ってことを表してるんですってことですよ
>>922>>923 ありがとうございます、理解できました
「60の倍数=6の倍数かつ10の倍数」だけど
「6の倍数かつ10の倍数=60の倍数」ということは30という例外があるように示せないってことで、
後、そしたら8という倍数は「6=2×3より、2の倍数かつ3の倍数=6の倍数」というようなやり方で簡単に出来ないから
もしNが8の倍数であることを示すためにはN=8k.8k+1.…といったようにするしかないということで大丈夫ですか?
>>924 Nの内容によって方法は変わるのですが
因数分解してから2の倍数が3個あるって示すのが楽なんじゃないでしょうか
それはNが2でも2でも2でも割れるってのを示すんじゃなくて
因数分解してから要素1が2で割れて要素2が2で割れて要素3が2で割れるってのを示すってことですよ
流れぶった切って悪いけど
ライブ講座と本質の研究だったら
どっちのほうが基礎からやってくれる?
研究の方が基礎からやってるのかも試練が、不得意な人がやるなら講義のが超絶楽だと思うよ
俺は音声聴いてると眠くなるから講義は完走出来なかったが・・・
928 :
大学への名無しさん:2011/08/04(木) 00:26:45.81 ID:I0I5kCuk0
>>926 研究には教科書にありがちな公式当てはめレベルの
計算練習とかはほとんど無いから初歩からやるならライブからのほうがいいかと
教科書自分で読んで研究でも良いけど。
網羅性は研究のが高くないか?
930 :
927:2011/08/04(木) 19:51:27.91 ID:I0I5kCuk0
>>929 入試レベルっていう意味でならそりゃあ研究でしょ
基礎じゃなくて初歩は少し省いてあるよってはなしで
このスレ「数学」で検索しても出ないんだけど
本質の解法はマジ神だわ
研究の赤例題で既に初見じゃ解けないから
演習に代えたけどもしかして解法の方が良かった?
>>932 個人的には解法のほうが好き。
演習は解説が少ない気がする。
研究の赤例題って初見で解けるもんなの?
黒すらたまに解けん問題があるんだが
935 :
大学への名無しさん:2011/08/05(金) 17:53:15.68 ID:+yfoovaN0
>>934 解答に何を期待してるんだ?
分野にやるんじゃね。ただ数V以外だとあんま技巧的な問題はないから
ある程度手は出るはず。
ってか全然伸びないな。
受験本番の季節だからもっと賑わってもいいはずなのに、なんという人の少なさ。
937 :
大学への名無しさん:2011/08/07(日) 16:59:05.90 ID:uU+zO87/0
>>936 みんな一生懸命、本質シリーズで勉強してるってことさ!!
>>937 煽りかどっちかよくわからんけど(そのビックリマークが煽り臭い)
実際2chで伸びてるスレってくだらない話題しかないし、そういうことに時間使うよりは全然有益なんだろうな。
俺も勉強しなきゃ駄目だな。
939 :
936:2011/08/08(月) 11:47:38.28 ID:Ihhht+NT0
>>937 いやまあ真面目な話そうじゃ無いか?追い込みの季節だしね
本質の研究やってるし俺も笑
頑張ろうぜ
因みに3cの積分についてはやっぱし研究典型問題に抜けが多い気がする。
まあ基礎があれば手が出ると信じてる
本質シリーズだと
やっぱり研究が一番オーソドックスな訳?
>>940 オーソドックスの定義によるが一番使ってるのが多いのは解放やん?学校で配られてるらしいし
受験生にとって使いやすいのは個人的には研究だとおもうが
>>939 俺も典型問題抜けてないか心配なんだよな。
ほかなんか補う予定ある?
1対1じゃ被り多いだろうし極選は高いしなー
943 :
939:2011/08/09(火) 05:14:44.69 ID:xxnNyfo70
>>942 微積分で抜けてるというか物足りないのは、減衰関数などの複雑な絶対値積分、後求積、平均値の定理、区分求積のとこかな
とりあえず研究にも載ってるけど練習が俺には足らないって感じです。
うん、やっぱし研究イイよ。
受験数学の理論微分編の対応するとこやるつもり
この本は研究の例題や章末をかなり詳しく扱ってていいぜ。類題もある。基礎の極意の内容も数列の極限以外はかなりカバーしてる。
範囲外の内容大杉だし記述も少し読みにくいしたかいが。
減衰関数の奴はキョクセンにあったからやるかな。
944 :
942:2011/08/10(水) 14:10:39.76 ID:kS9ZDaL10
>>943 たしかに減衰曲線の面積は解き方が上手くないな。
積分範囲を0→πになるように置換すれば等比級数に持っていけるのに。
平均値の定理は名大のと防衛大のくらいだっけ? ってか平均値ってそんな重要かな。
区分求積はもとからあんまりパターン知らない……。
どっちにしろ微積系は演習をするに越したことないからなー。
微積の極意か天空への理系数学 かで迷ってる。理論も面白そうだなー。
先に問と例題を終わらせたんだけど
やっぱ皆章末までやってるよね?
なんかB問題らへん難しそうだったから
章末のかわりに1対1とかにしようかとか思ってるんだけど
章末のレベルってどんな感じなの?
エロい人教えて下さい
946 :
大学への名無しさん:2011/08/11(木) 20:48:07.86 ID:Wwo1bjhm0
>>945 章末一対一の演習レベルから例題レベルまでそろってるよ。
でも知らなくてとけねーよ!!見たいな問題はない。
章末やってみなよAレベルだけでひとまず一周して。
お金ももったいないし。
947 :
大学への名無しさん:2011/08/11(木) 21:18:32.69 ID:YkwfOtnf0
俺も同じことで迷ってるわ
一対一は友達に貰ったUBしかないしたぶん本質が章末まで終わってから
被ってるところは省きながら軽く一対一やってすぐ文系プラチカと過去問って感じで考えてるけど
そうなると本質をどれだけ丁寧にやるかがカギになってくるんだろうなと思って
復習入れたら4周か5周はしてる
研究って定石とかパターン問題とかあんまり載せてないのって(章末ではある程度扱っているけど)、
そういう問題も基礎的な部分を土台に自分でなぜそう解くのか考えて欲しいってことじゃないのかな。
結果として抽象化される事柄でも自分の思考でそこまで帰着させることが大事なんじゃないかと。
このプロセスこそが非典型問題(見たことのない問題)を解くカギになることも多いしね。
その思考のための土台は研究に十分に載ってるし、自分でやっててそういう意図があるんじゃないかと思った。
もちろん、効率との兼ね合いもあるから、ある程度そういうことを書いてある本をやって、
先に結果を知った上でやるのもいいと思うけど、研究をせっかくやるのなら、
あくまで1対1は補助的なものと考えてやるほうがいいんじゃない?
949 :
大学への名無しさん:2011/08/13(土) 20:27:04.66 ID:eGCZzic6O
>>948はげどう
将棋で例えれば、定跡丸々覚えるんじゃなくて、その定跡の指し手の意味を考えることなんだよな。
どうしてその手を指すのか、その根拠である 厚みやさばきなんかの概念を知れば定跡はずれても(非典型問題)、正しく指せるし、俺レベルだと定跡をつくることもできる。
950 :
大学への名無しさん:2011/08/15(月) 18:26:10.69 ID:TNQrG1HT0
みんな本質の研究UBの複素数平面のところってやってる?
あれよくわからないしやる意味ないだろうから飛ばしてもいいんだろうか
それともちゃんとやったほうが理解深めれていいのかな
951 :
大学への名無しさん:2011/08/15(月) 18:36:04.50 ID:gBKnA41MO
やったほうがいい
おもしろいし
数Cの行列・一次変換と対にして覚えると面白い。
#次の過程で再び行列・一次変換が消え、複素平面が扱われるようだが。
953 :
大学への名無しさん:2011/08/16(火) 00:17:28.83 ID:ZDtYAL5b0
文系だからなぁ
まぁめんどくさくて適当にやってたしもう一回ちゃんとやってみるか
あれぐらいなら速攻で終わるし
別にテストにはでないから雑学的な気分でやればいいさ
複素数まで入れるとx^n=1の解が複素平面上に正n角形に並ぶなんてなんか素敵やん?
試験でいいかは知らんけど、複素数使えると整数問題も有利だからな。
>>949 でもそのお前が作った定石も気づいたら似たもの(ほぼ同じでしかもより優れたものを)既にほかの書籍が扱ってた
なんてよくある。流石に定石作成は自分より頭のいい奴に任せて、そのたくさんの定石に触れて理解に努める方がいいぞ。
将棋だってそうだろ。
解法→極選実践と終えて
次極選発展に移る前に何か問題集をやっておきたいんですけど
難易度的にはどの辺りの問題集が適しているんでしょうか?
マーチ理系なら、間に赤本でもいけるらしいですけど
自分が目指しているところは数学だけかなり難しいようなので
赤本は極選発展を終えてからの予定です。
それも踏まえてよろしくお願いします。
957 :
大学への名無しさん:2011/08/18(木) 18:03:47.64 ID:JKVfbC7Z0
>>956 具体的にどこ?マーチなのに数学むずいとかあるの?
というか過去問だろまずは
マーチの理系よりも一般的に難しいと言われているところです
赤本は途中傾向確認程度にはやりますが、やり込むのは最終段階の予定ですね
極選だけだと演習量も足りないかなと思ったので
実践から発展につなぐ間のレベルの問題集があれば知りたいなと思って・・・スレチだったら申し訳ないですが
他のスレではあまり極選について語られることがないようなので
よければ助けてもらえると嬉しいです;
959 :
大学への名無しさん:2011/08/18(木) 22:27:11.38 ID:9EVviOXq0
大学名言えよ
医学部とかその辺りです
実践と発展の間のレベルの問題集
であればとりあえず何でもいいです
現段階では予定最終到達点は発展なので
大学のレベルは本当は関係ないと思ったのですが
まあその辺です
お願いします
961 :
大学への名無しさん:2011/08/18(木) 23:25:07.19 ID:sx+sKwK60
大学名言えば早いのに
特定されるわけないのになぜそんなに嫌がるのか
あまり手出しし過ぎずに今やってるのやり込みながら
もう過去問解きまくってもいいと思うけどな
東大理Uと言えばどうでしょうか
実践と発展の間のレベルの問題集が知りたいんです、すみません何度も;
ちなみに今は高2なので赤本はまだまだの予定です
どうでしょう
964 :
大学への名無しさん:2011/08/19(金) 00:08:13.18 ID:DREq2QHt0
どうしようもないでしょうな
なぜか大学名を出すとそっちの話題になってしまうんです;
なので言うのは控えたかったんですけど・・・
みなさんに大学名の事ばかり気にされて
どこに行っても明確な答えがもらえず
ここが最後と思い来たのですが
失礼しました;;
966 :
大学への名無しさん:2011/08/19(金) 00:38:44.93 ID:DREq2QHt0
実践はどれぐらいやったんだ
ぶっちゃけ高二なら実践を極めるほどやってから
一対一でもやれば発展やらなくても合格点余裕で取れると思うけどな
どうしても発展やりたいってなら別だが
967 :
大学への名無しさん:2011/08/19(金) 01:55:40.37 ID:PPDSrMp+O
1対1は要らんでしょ
ゴクセンのほうが明らかにレベル高い
968 :
大学への名無しさん:2011/08/19(金) 07:01:16.94 ID:wh97mqRhO
解法と1対1が被ってるじゃん。
内容的に
>>956 数学3Cも終わってる?
今年の12月くらいまでに高校数学が一通り終わってる
(教科書の例題レベルの問題は計算ミス以外のミスをしないで解ける)
ようになっていればその後の受験勉強はすごく楽です。
もうすでにその段階にいるなら、いったん過去問をやってみて
自分の穴をみつけて、それに合わせて教材を選択します。
過去問をやるのを嫌がっているようですが、
自分の現状を確認するためにも、
赤本全部やれとは言いませんが
2、3年分くらいはやってみるべきだと思いますよ。
なんか周りのやつの対応が悪いみたいな言い方してるけど明らかに今回は質問者の姿勢が悪い。
ここが最後の頼みみたいな言い方してるけど、
話題がそれるだろうからって、最初から疑ってかかって大学名言わなかったのがいけないんだろ。そんなやつはどこにもうからねーよ。土方やれマジで。そんな根性もないわな。土方に失礼だったわ。
普通に過去問題やれよ。そこで何を課題か見極めろ。単純に問題集の難易度が知りたいなら他のスレのテンプレに幾らでも有るじゃねーか
研究と極選本当におわってるなら過去問手は出るし、次に何が必要かある程度判断できるはず。
本当質問の仕方が明らかにわりーだろ
数学以前に国語力で普通にアウト
研究よくその国語力で理解出来たな笑
マーチと東大とかクソ差が有るのにまともに答えれるわけねーじゃん。アホすぎ。
972 :
大学への名無しさん:2011/08/19(金) 20:33:00.94 ID:DREq2QHt0
研究じゃなくて解法じゃねまぁどうでもいいけど
まぁとにかくこれで志望校を東大って出したから批判されたって脳内解釈するのだけは止めてほしいね
最初から普通に志望校言ってれば何事もなくアドバイス貰えたに決まってるのに
なにがひどいって、俺が痛烈な批判をするまではみんな期待通り質問に関してアドバイスしてくれてんのに挨拶もしねーとこ。
どうせ頭の中で俺のレスみて「ほら批判してる」とか思ってんだろうけど、せめて答えてくれた奴らにはお礼くらい言えよ。
マジでうざいです。
お前はそれ以上にうぜえから黙ってろ
まあこういった類のスレは底辺野郎しかいないから
むやみに志望校を言わないのはある意味正解かもなw
嫉妬心をあらゆる言葉に変えてレスしてくるからねw
まず東大志望からしたら極選レベルは通過点だろうし
質問の内容と求めている事は一致していたと思われる
>>971はその程度も読み取れないなんて人の事言えないじゃん
精神的に弱いびびりのガキと国語力の無い
>>971、
どっちもどっちw
自演乙
977 :
971:2011/08/20(土) 18:12:06.25 ID:5NFMJdYJ0
本当自演乙笑
自己弁護も大概にしろ
俺以外の回答者は読み取れてるのか?笑
嫉妬とかそういう問題じゃねえだろ。
なんで受かってもいない奴に嫉妬すんだよ笑わせやがる
978 :
大学への名無しさん:2011/08/20(土) 20:05:12.15 ID:KoRJiqKB0
そんなことより復習を重点的に研究やってたら全然進まなくて辛い
忘却曲線に沿って前日、1週間前、1ヶ月前にやった範囲を順々に復習してるからなんだけどさ
例題から章末まで完璧にするのに10月いっぱいまでかかりそうだから
そのあとプラチカ間に合わなかったらそのまま過去問なんだが大丈夫かな
志望校は東大文科です
979 :
大学への名無しさん:2011/08/20(土) 21:54:36.32 ID:hUGiN5T/0
>>978 他の教科がどこまでいってるのかにもよるが東大で10月研究一周完了だと
かなりきびしいんじゃないか?過去問はやった?手出る?
まじめな話一度全範囲定理&証明と
問いと黒例題だけ一回回す事をおすすめしておく、2周目行こうに黒例題+赤例題
3周目で章末A、4周目でBみたいに。
全体像を分かった上で見直すと改めて理解も深まるし何より一度全体を見ておくと
安心できると思う。
実際問題現役なら正直研究完璧にするので残り時間だと手一杯な気がする・・・
>>979 1周っつーか全問題の解法暗記が完了するのが10月ぐらいかなと
今UBのベクトルのちょっと前ぐらいの例題だから
とりあえず例題全部終わらせたら章末潰していく感じでやるつもり
浪人だから時間割けるしできるだけ数学を頑張るつもりなんだけど
研究の全問題の解法を暗記する程度じゃ東大の過去問は厳しいのかな?と思ってさ
981 :
大学への名無しさん:2011/08/20(土) 23:49:34.90 ID:OI/YY+OP0
解法暗記とか、本質シリーズの精神から外れるだろ…
そんなんじゃ東大はムリ
982 :
大学への名無しさん:2011/08/21(日) 07:18:44.74 ID:RKn8Sx/H0
まぁ最終的には反射的にでるぐらいまでやらなきゃ何事もアカンだろうけど
ふつーに本当に研究しか数学やってないなら東大数学は舐めすぎだろ。
数学何完目指してるのかによるが高得点はまず無理。
整数系の問題も足りてないだろうし。
数学だけでいうならもう時期的に夏終わるんだから過去問ヤレって
正直なんで過去問ヤレって言われてるのにまともにやらない奴がいるのかなぞだわ。
その上で数学はある程度今年出そうでかつ
自分が手が出そうな分野に絞って今後対策する
しかないだろ。確率だけとか。他の教科もとれないならもう一年がんばって。
伸びないスレほど、そのスレの本は真剣に取り組まれているもんだぞ。
伸びるスレなんて偉そうな奴しかいない。
ここもそんな感じに変わってきたのか。
しかし東大理2志望君も自演してまで批判に戻ってくるのは普通に残念な子だなとは思った。
しかも一番偉そうにしてるし。
はいはい
お前のスレの考えとか誰もきいてないから
↑やっぱり偉そう。
別人だが
いや、別人にしても現れるやつが偉そうなやつ ってことに変わりなくね?
ってか思った。
研究は素晴らしい。極選はいらない。
こんな便所の落書きに偉そうも何もねえから
>>987 だから、お前の考えとかきいてない。
自己主張は他でやんな
990 :
971:2011/08/22(月) 18:59:20.01 ID:7heJKcFC0
>>988 顔真っ赤にしてはりついてねぇで鏡みておいで
そろそろ次ぎスレだな。テンプレとかどうする?
誤変換してる奴に顔の色どうこう言われる筋合いねーよ底辺
>>989 ワロタ。このスレに限らず、「自分の考え」じゃないことを述べてるスレなんねーだろ
それぞれ自分の意見を出し合ってんだから。
そんなに言うならお前自信の考えじゃない客観的な何かをお前が提示してくれよ。
お前2ちゃんは初めてか?力抜けよ
↑結構頻繁に確認してるとこがw
だから難関校を目指すつもりなら
理科・社会は夏入ってからでも間に合うから
時間のかかる数学と英語だけはせめて春ぐらいからはじめとけって言ったのに
もう数学は合格点最低点ぎりぎり確保できればいい方ぐらいに考えといたほうがいいよ
特に国立は科目数多いんだから
a
受験票返してください。オナシャス!
999 :
大学への名無しさん:2011/08/25(木) 00:56:40.10 ID:I9wU9PbMO
本質研究+ゴクセンで受からんところなどないよ
はいはい
1001 :
1001:
このスレッドは1000を超えました。
もう書けないので、新しいスレッドを立ててくださいです。。。