>>950 一分で倍になるんだから一分前は半分なのだよ
5人じゃむりだぁね。 漏れにもわかるYo。
955 :
908 :03/10/24 06:30 ID:oh1WYA+c
まだやろうか? ここしばらく忙しくなって相手できなかったが、今日の夕方からでもw
956 :
937 :03/10/24 09:49 ID:vjDfrHzE
>>955 (=908? まぢ?)
おぉ、まだ続けられるんだ。
ある意味すげえかも。
んでは、
>>937 へのレスよろしく。
できたら
>>929 もどうかひとつ。
そろそろ数学板の質問スレに持っていった方がよいような。
帽子の問題は様相論理で片が付くと聞いた記憶が。
>>948 なんか違う気がします。
存在命題の否定は全称命題になるのでは。
>>945 の問題は、ぱっと思い付くところでも、
てきとうに考えるか、フレーゲ流にとるか、ラッセル流にとるか、クリプキ流にとるかで答えも変わるし、
飯田隆が『言語哲学大全』(現4冊)を書いちゃうような問題なので、
出題者の意図か解答を示してもらって、
これもやっぱり数学板(か哲学板の言語哲学スレ)へ持ち込むのが無難かと。
958 :
955 :03/10/24 22:23 ID:oh1WYA+c
ぷらぷら遊んできたから遅くなったけど、帰ってきたよー。
> おぉ、まだ続けられるんだ。ある意味すげえかも。
まあねぇ。自分が間違っていると思っていないし、いくらでも続けられるさぁ。
> んでは、
>>937 へのレスよろしく。
一点だけ指摘しておきます。
えと、まず937さんは三人の場合は認めているんだよね。
このときの推論の過程を「実在しない人の判断」に
頼ることなく書いてみてください。多分書けないと思うのだが……。
> できたら
>>929 もどうかひとつ。
十分な時間があれば、赤だと宣言できますね。
時間の見積もりが難しいんですけど、「他のやつらも
天才なんだからこんぐらいの推論はもうしてるべさ」って
確信できるくらいの時間が必要です。
わたしはほんと通りがかりです。
大体読ませてもらいましたが
>>863-865 は論理的に正しく、
>>937 さんのもおそらくは正しいです。
863-865が否定できない以上5人以上ではすべて成り立たないといえるでしょう。
たとえば、わかりやすい例として
ax4乗+bx3乗+cx2乗+dx といった4次方程式があるとして、
a=−1/24、b=10/24、c=−35/24、d=50/24とします。
この時、
x=1、2、3、4のどれを代入しても解は1になります。しかし、
x=5を代入すると解は1にならなくなります。
これと同じことです。
>>959 > ax4乗+bx3乗+cx2乗+dx といった4次方程式があるとして、
> a=−1/24、b=10/24、c=−35/24、d=50/24とします。
> この時、
> x=1、2、3、4のどれを代入しても解は1になります。しかし、
> x=5を代入すると解は1にならなくなります。
> これと同じことです。
これは釣りなのだろうか…
わかりやすくなってないし、同じこととも思えないけど…
961 :
955 :03/10/24 23:02 ID:oh1WYA+c
うむむ。私は863-865はどういう主張をしているのかあまり
良く分かっていません。でも、
>>918 で一応反論してはいます。
864の5-2が有り得ないというのは何故言えるのか、
状態決定的でないとはどういう意味なのか、
どういう条件が成立したときに状態決定的でないのか、
聞きたいことはいろいろあったのですよ。
4次関数の値の例だけど、これは適当ではないかも……。
少なくとも私は小さい数で成り立つから、大きな数でも
成り立つといっているわけでなく、数学的帰納法による証明を与えているし。
962 :
955 :03/10/24 23:21 ID:oh1WYA+c
王様ないけど、アメリカに皇帝はいたよね。 ノートン一世って言ったっけか。
USAとは言ってないからブラジル王とかマンコカパックもアリのような気がしてきました
959です。
961さんのいう数学的帰納法とは
>>919 でやっている証明ですよね。
これは証明になっていないです。矛盾点を下に示します。
919の文章中に
「この時に、この状況が N-i+1 人が白い帽子を被っていて、i-1人が赤い帽子を被っている
これは、補題 N-(i-1) の前提と同じである。」
というくだりがありますよね。
しかしこの状況は「補題 N-(i-1) の前提と同じ」とはいえないです。
なぜなら、この状況でも賢者の人数はN人で変わりないですよね。
「補題 N-(i-1) の前提」では賢者の人数はNー1人です。
ここに矛盾があるわけです。
ついでに 確かに4次関数の例は適当でなかったかと思います。 一応途中まで成り立っていても、 急に成り立たなくなることがあるといいたかったのですが 961さんもそのあたりはわかってらっしゃるようですね。
966 :
955 :03/10/25 00:02 ID:Pk+bQDRa
帰納法の証明では、補題の前提部分を見てくれれば分かるのですが、 白い帽子の人が一人増えるごとに、赤い帽子の人が一人増えているので、 常に N 人です。 また、本証明の方でも、ある赤い一人の帽子の色が仮に白だとすると、 ということなので、赤が一つへって白が一つふえて、やはり 全体の人数は N 人となっています。
あら、 確かにその通りですね。まぬけをさらしちゃいました。 でもね、やはり矛盾があるのですよ。 オンエアバトルとりあえず見てイイかな?
どうぞー。私も眠くなったら勝手に寝まつので夜露死苦。 ついでに一問出しておくかな。 北海道には上り坂と下り坂、どっちが多い?
969 :
937 :03/10/25 00:41 ID:qsa/OyZk
>>958 > このときの推論の過程を「実在しない人の判断」に
> 頼ることなく書いてみてください。多分書けないと思うのだが……。
3人の赤(R-1、R-2、R-3)+7人の白(W-1〜W-7)がいる。
1.最低1人は赤という前提から、他の全員が白に見える人物がいれば
その人物は自分の色が赤と判る筈である(前提)
2.では、自分以外にたった1人の赤(x)を見ている人物(y)がいたらどうか。
yが白なら、xからは他の全員が白に見えるはずである。
1の前提から、xは自分の色が判るはずである。
もしxが何も答えななら、yは自分が赤であろうと推測する事ができる。
つまり赤が2人だけなら、赤の人物は互いに自分が赤であると
推測する事ができる(前提からの発展A)
3.発展Aをさらに発展させる。
自分以外に赤が2人だけ見える人物(z)がいた場合。
もしzが白なら、発展Aから赤の2人はそれぞれ自分の色を推測している筈である。
ここで赤の2人が何も言わないということは、zが自分からは確認できない赤が
もう1人いると言う事ができる。つまり、zは赤である。
(発展Aの発展B)
4.ここで前述までの推論ができる限界が発生する。
ここまでの推論は、自分以外に確認できる赤の人数が2人まででないとならない。
すなわち前提より推理できるのは、自分以外に赤2人までである。
(制限C)
5.さてR-1〜R-3の各人は、自分以外に赤2人を確認している。
彼らは自分の観測及び互いの挙動から、発展Bを用いて自分の色を推理できる。
以上で、3人の場合の証明終わり。
970 :
937 :03/10/25 00:42 ID:qsa/OyZk
>>961 > 864の5-2が有り得ないというのは何故言えるのか、
この場合、D、Eが前述の仮定Aを用いて自分の色を判断している筈だから。
>>968 一方通行が無いものとすれば、上りか下りかは主体に左右されるので、同数。
>>970 ばかだなー。北海道だぞ?
なんで同数になるんだよ。そりゃ数でいえばそうかもしれないけど、
距離で言ったら違うだろ。
そこんとこ、いや、おまえ、ほんと、賢いくせにバカだな。
上りのほうが多いに決まってる。
なぜなら、雪が積もって足元が滑り、同じ所を何度も上ることになるからさ。
ここで、「足元が滑って坂下まで落ちるのなら、それはやはり下り坂だ。」なんて
言おうものなら、お前は禿るから気をつけろ。
>>971 質問は「どちらが【多いか】」なんだから、
距離で答えるのは筋違い。
距離で答えてもよいとしても滑り落ちた部分は下りとして加えるのが普通だろ
>>972 それじゃあお前は「ふつうは禿る」って言いたいのか?
そりゃフサフサに対する差別か?ふざけんな。太れ。
「帰納法の仮定から、X 氏が見ている中で最も賢い赤い帽子の人が
自分の帽子が赤いことに気づく。」
とありますがこの時の「X 氏が見ている中で最も賢い赤い帽子の人」
をY氏としましょう。
ここでY氏は「もし自分が白い帽子だったら」と考えなくてはいけないわけですが、
この状況でY氏に見えているのは「補題 N-(i-1) の前提」の状態である
N-(i-1) 人が白い帽子をかぶっているという風景ではなく、
相変わらずN−i人が白い帽子をかぶっているという風景です。
ですからY氏は「補題 N-(i-1) の前提」を使って推論を進めることができません。
上記
>>969-970 はスマートな説明ですね。
975 :
937 :03/10/25 01:04 ID:qsa/OyZk
いずれにせよ、まず制限Cの範囲内の人物が判断しようとして判断できない場合
それを見て他の人物は自分の色を判断する事ができる。
つまり件の論理は、推論の初端として制限Cの範囲内の人物が判断することが前提となっている。
ところが「答えがない」状況を「判断の結果」としてしまうところに無理があるんだな。
「判断する人物がいない」状況でも「答えがない」場合があることを考えていない。
これは「『欠席している人は手を挙げて』と言ったのに誰も答えないから全員出席ね」
と言っているのに等しい。
>>972 ID:Vy9B0avd はスルーでよろ
976 :
955 :03/10/25 01:06 ID:Pk+bQDRa
全部で三人の場合だけのつもりで書いたのですけど、説明不足だったようですね。 でも、本質的には変わりないので書き直してもらう必要はないです。 > 1.最低1人は赤という前提から、他の全員が白に見える人物がいれば > その人物は自分の色が赤と判る筈である(前提) あなたの論理を拝借すれば、他の全員が白に見える人はいない。 いない人は決断することはないから、証明に不備があるということになりますよね。 あと、3.ではzが自分は白だと仮定していて、さらに2.でも y は自分が 白だと仮定していますよね。 確か、2重に反事実となるような仮定を設けるのはまずいと前に言っていたはずですけど、 それと矛盾していませんか? > ここまでの推論は、自分以外に確認できる赤の人数が2人まででないとならない。 その理由は? これが正しいとすると、4人の場合の証明を同様にやろうとすると破綻する?
>>975 それはいいが、一つだけ言っておく。
お前らが、お前ら以外からスルーされっぱなしだという事に気づけ。
(言っちゃダメ)
> ところが「答えがない」状況を「判断の結果」としてしまうところに無理があるんだな。
> 「判断する人物がいない」状況でも「答えがない」場合があることを考えていない。
「十分に時間がたてば」 答えが出てくるはずなのに、「答えがない」から
それを判断の結果として使えるということです。
>>974 あなたが言っている現実の Y 氏と、X 氏の想像の Y 氏というのは
視界が違うので考えることも推論の結果も変わってくるのですよ。
だから、その指摘は意味がありません。
>>979 あ、ごめんなさいその通り。
矛盾を証明するにはもう一段進めなくてはでした。
X氏の想像のY氏はもし自分が白の帽子だったらと仮定して
X氏の想像のY氏の想像のZ氏を想定して推論するわけですよね。
この推論はZ氏から見てX氏もY氏も白の帽子であるときに成り立つわけですが
ここでY氏の想像のZ氏にはY氏が赤の帽子ということが見えているということを
X氏は知ってしまっているので、X氏の推論はは破綻しますね。
>>976 > あなたの論理を拝借すれば、他の全員が白に見える人はいない。
> いない人は決断することはないから、証明に不備があるということになりますよね。
> あと、3.ではzが自分は白だと仮定していて、さらに2.でも y は自分が
> 白だと仮定していますよね。
> 確か、2重に反事実となるような仮定を設けるのはまずいと前に言っていたはずですけど、
> それと矛盾していませんか?
1は、あくまで前提条件の解釈だよん。
全ての推論は「赤は最低1人」という条件を発展させなければならない。
他に頼るものはないわけだからね。
そして2・3はそれを単に発展させただけ。
つまり、1〜3は基本行動の定義として考えてもらっていいよ。
で、それらを踏まえて3人が赤だった場合はどうよ?というのが5ね。
つまり3までの基本行動を踏まえて、観測結果と比較を行うわけだ。
5は、観測結果と矛盾しない。でしょ?
=続く=
>> ここまでの推論は、自分以外に確認できる赤の人数が2人まででないとならない。
> その理由は?
> これが正しいとすると、4人の場合の証明を同様にやろうとすると破綻する?
>>975 でも書いたけど、推論はまず3人以下の赤で行わなければならない。
と言うか、2人の赤を確認できる人物は、他の赤の挙動から自分の色を判断できる。
これはいいよな。
任意の人物から見た赤が3人の場合、その3人が互いにたった2人の赤を確認できるなら
前述の発展Bの挙動が発生する。
もし発生しなければ、それ以上の赤がいる場合だけという事になる。
ここでその3人以外に赤が見えなければ、自分が赤。これで4人の場合は終了。
実際は、2人の赤を確認できる人物がいなくなったので、誰も答えない。
そのとき状況は4人以上の赤を示唆している。
つまり、答える人物がいない=4人以上の赤。
赤が3人だけ見える場合は自分が赤。それ以上見える場合は自分の色は不定。
こんなところでいいかな。
ちなみに、赤3人の場合にR-1〜R-3の判断が遅れたら、
残りの白全員が「俺は赤」と言い出す事になるなw
>>982-983 937さんスバラスィ!!
とっても良くわかる説明ですね。
お友達になりたいくらいです。
しかしこーいった問題を考えるのは楽しいですね。
当方頭を使ったのは7年ぶりくらいですこしかしこくなったきぶんです。
985 :
937 :03/10/25 02:19 ID:qsa/OyZk
>>984 ありがとー。
でもここまで議論を伸ばしちゃった責任があるような気がするので
あまり褒めないで。
986 :
955 :03/10/25 02:20 ID:Pk+bQDRa
>>981 > この推論はZ氏から見てX氏もY氏も白の帽子であるときに成り立つわけですが
> ここでY氏の想像のZ氏にはY氏が赤の帽子ということが見えているということを
> X氏は知ってしまっているので、X氏の推論はは破綻しますね。
あなたがこの文脈で使っている 「Z 氏」は X 氏の想像によるものではなくて、
「「X 氏の想像する Y 氏」の想像した Z 氏」です。
だから、X 氏が Y 氏に関して知っている情報と矛盾していても構いません。
このあたりの誤解があるから、「前提より推理できるのは、自分以外に赤2人までである」
というのが出てきてしまうと思うのだが……。
>>983 4人の場合は誰かが自分の色が赤であることに気づくとしている訳だね。
じゃあ、今度は5人のケースで、彼らの中に白が一人以上いたら誰かが
自分の帽子が赤であることに気づくことは理解できる?
そうすると、誰も気づかないケースがあるとすれば、全員が赤ということになるのだが
オッケー?
荒らしじゃない本物の基地害には放置は効かないという事ですね
988 :
955 :03/10/25 02:43 ID:Pk+bQDRa
>>987 ええ、効きませんw
というか相手がいるから、放置になってないしね。
今度こそは議論終わるだろうと思って回答してたんですけど
堂堂巡りしだして辛いですね。
問題
封筒が6枚入った、見かけが全く同じな箱が二つあります。
一方の箱には6枚の封筒が全てあたりくじが入っています。
もう一方の箱には、3枚の封筒はアタリクジで残りの3枚の封筒ははずれクジです。
さて、二つの箱から未開封の封筒を5枚取り出して
それが全部アタリクジである確率を3/4以上にするにはどうしたらよいでしょう。
989 :
937 :03/10/25 02:44 ID:qsa/OyZk
>>986 > じゃあ、今度は5人のケースで、彼らの中に白が一人以上いたら誰かが
> 自分の帽子が赤であることに気づくことは理解できる?
何でさら5人のケースを出してくるの。
4人以上の赤なら誰も答えられない。→1人以上の白=4人以下の赤。
だからその条件なら判断できるよ。
ただし
5人で他の全員が赤なら自分の色は判断できない。
全員で6人いて、1人以下が白だったら自分の色を判断できない。
7人で2人以下が白だったら自分の色を判断できない。
ここらへんはオッケーか?
5人いて、誰も答えられなかったします。 何故? それは、5人ともが赤だから。 どうしてこれの同意が得られないんだー
訂正 > 5人で他の全員が赤なら自分の色は判断できない。 ここは削除して。 全部で5人なら判断できるわ。
次スレは?
数学板にでも立てれ
空気の読めない自己厨二人のせいで次スレもたたず。 このまま続くなら、もう次スレはイラネ
この数百レスの間ず───────っとスレ違いをグダグダやってたやつらは、 賢 い ですね。 次スレいらね。 ダル本の頑張りが可哀想に思える。
同意 ほんともったいない
というわけで
*問題* 彼らは自分の頭の上に乗っているその脳味噌で 自分たちがスレ潰しだと気づくことができるでしょうか? できないでしょうか?
申し訳ないが、このまま決着がつかずにスレが1000を得るのが、このスレ住民のささやかな復讐かも知れないな。
1001 :
1001 :
Over 1000 Thread このスレッドは1000を超えました。 もう書けないので、新しいスレッドを立ててくださいです。。。