*****5^(n+1)+6^(2n-1)が31の倍数であることの数学的帰納法による証明が
>>2をゲット!*****
n=k+1 のとき与式は
>>1 ●N個、○N個の合計2N個の玉がある。
5^(k+2) + 6^(2k+1) これらすべてを円形に並べる並べ方の総数を求めよ。
である。この式を変形すると
>>3 ∫[0≦x≦1]x(log(x))^2dx を求めよ。
5*5^(k+1) + 36*6^(2k-1)
>>4 レムニスケート曲線 x^2+y^2=a√(x^2-y^2) (a>0) 上の任意の点(x、y)
となる。この式の5^(k+1)に での接線の方程式を微分計算により求めよ。
5^(k+1) + 6^(2k-1) = 31m
>>5 f(t)=e^(-t)sinwt をラプラス変換せよ。
より得られる
>>6 正多面体が4,6,8,12,20の五つしかないことを証明せよ。
5^(k+1) = 31m - 6^(2k-1)
>>7 U_n(cosθ)=sin((n+1)θ)/sinθ とし、母関数展開、
を代入する。すると与式は 1/(1-2xξ+ξ^2)=Σ[n=0〜∞](U_n(x)ξ^n) を証明せよ。
31m*5 + 31*6^(2k-1) = 31*[5m + 6^(2k-1)]
>>8 D=((X、Y)∈R^2|1<X、0<Y<X^α
となる。 0<α<1 ならば次の広義積分は収束することを示せ。
よって数学的帰納法により、 I=∬1/x^2+Y^2 dxdy
すべての自然数nの値において
>>9 0以上の実数x,y,zが x+y^2+z^3=3 を満たしている
与式が正しいことが示せた。 L=x+y+z とおくときLの最小値mが m<(3/2) であることを示せ
証明終
>>10 5+3=x xを求めよ。
数学板をよろしくお願いします ∫(e^x^2)dx =(e^x^2)/2x
3 :
1:03/08/07 06:12 ID:fkS5ELYG
削除以来出してきた…
/ ~-,, i ~~,i'
,/ / i' ,/ ,,
/ .,/ ,. /  ̄ ̄ ̄ ̄ \
,、/ / / ~''フ ./ .+;―――+ /~
./ く ,/ / / 'i, ./ ./
\, \/ / / ,/'i, 'i, / ./
.\ ./ ,., '-, / 'i, V ,i'
.> ./ .く \ '' ', く
_,,,,/ ∠--''''' 'i, / .,, .\,
i' __,,,-, _,| / / .\ ~'-.,,_
.'i_,--―''''i | .レ ,,-''~ / \, .~,;'
| | _,,-, i, ._,-'~ /'''--...,,_ ~'''-,,,,/
.|~~''; ..| | 'i. 'i, ''~ '-,,,_ ~''-,,
i |. 、| | 'i, 'i, ~''-..,_ ./
,i . | | | 'i, 'i, .,,__ ~''
,/ | 、| | i _,,-' ./ ~~'''''--..,,_
''-,,_ i.. ..| | .~ .''--...,__ .~''-..,_
~ .、| | ~''''-...,,_ ./
ーー ~''-,/