1 :
心得をよく読みましょう:
粘着だし【ノリ】はちゃねらーそのものだよね
*****5^(n+1)+6^(2n-1)が31の倍数であることの数学的帰納法による証明が
>>2をゲット!*****
n=k+1 のとき与式は
5^(k+2) + 6^(2k+1)
>>3 ●N個、○N個の合計2N個の玉がある。
である。この式を変形すると これらすべてを円形に並べる並べ方の総数を求めよ。
5*5^(k+1) + 36*6^(2k-1)
>>4 ∫[0≦x≦1]x(log(x))^2dx を求めよ。
となる。この式の5^(k+1)に
>>5 レムニスケート曲線 x^2+y^2=a√(x^2-y^2) (a>0) 上の任意の点(x、y)
5^(k+1) + 6^(2k-1)=31m での接線の方程式を微分計算により求めよ。
より得られる
>>6 f(t)=e^(-t)sinwt をラプラス変換せよ。
5^(k+1)=31m - 6^(2k-1)
>>7 正多面体が4,6,8,12,20の五つしかないことを証明せよ。
を代入する。すると与式は
>>8 U_n(cosθ)=sin((n+1)θ)/sinθ とし、母関数展開、
31m*5 + 31*6^(2k-1)=31*[5m + 6^(2k-1)] 1/(1-2xξ+ξ^2)=Σ[n=0〜∞](U_n(x)ξ^n) を証明せよ。
となる。
>>9 D=((X、Y)∈R^2|1<X、0<Y<X^α
よって数学的帰納法により、 0<α<1 ならば次の広義積分は収束することをしめせ。
すべての自然数nの値において I=∬1/x^2+Y^2 dxdy
与式が正しいことが示せた。
>>10 0以上の実数x,y,zが x+y^2+z^3=3 を満たしている
証明終 L=x+y+z とおくときLの最小値mが m<(3/2) であることを示せ。
3 :
◆GoGoGoDcDk :03/07/01 05:44 ID:2mtwgnwJ
嫌い嫌いも好きの内ってやつだ
ラヴだな。ラヴ。
5 :
心得をよく読みましょう:03/07/01 15:38 ID:6oL3Jr1E
なんだかんだでアンチも十分2ちゃんねらー
6 :
心得をよく読みましょう:03/07/01 21:43 ID:jp4wWl3Y
アンチは2ちゃんねるを憎むあまりアンチ活動を始めるが
結局2ちゃんねるに巣食う荒らしと同じレベルに成り下がってしまった。
信者はアンチ2ちゃんねるを憎むあまりアンチ叩き活動を始めるが
結局2ちゃんねるに巣食う荒らしそのものになってしまっている。
8 :
心得をよく読みましょう:03/07/02 02:41 ID:tMXF+0T6
本当にレッテル貼りやオウム返ししか出来ないんだな。
9 :
心得をよく読みましょう:03/07/02 04:32 ID:X8GZE8iA
11 :
心得をよく読みましょう:03/07/03 00:39 ID:pG4vAxYi
アンチスレ100以上常時ageているな。
12 :
心得をよく読みましょう:03/07/03 01:38 ID:HUVTHvM3
いままでアンチたちはどれだけのスレをこの板に立ててきたのだろうか?
13 :
心得をよく読みましょう:03/07/03 01:56 ID:tYIBFuJo
敗訴するような掲示板にはアンチがいてもおかしくないね
14 :
心得をよく読みましょう:03/07/03 01:56 ID:TxBHXQKo
他人に迷惑掛けまくるこの糞掲示板にアンチがいないほうがおかしいw
15 :
心得をよく読みましょう:03/07/03 01:57 ID:MQIK4Ar9
真っ当な批判もあちこちにコピペされまわったりしたら
無視される
16 :
心得をよく読みましょう:03/07/03 01:59 ID:MQIK4Ar9
DHCの判決次第
17 :
心得をよく読みましょう:03/07/03 02:00 ID:MQIK4Ar9
今年か来年上半期が2ch閉鎖かこれまでの体制を捨てての存続かの分かれ目
18 :
心得をよく読みましょう:03/07/03 04:05 ID:pG4vAxYi
アンチ2chは2ch叩きと言う遊びをやってるに過ぎない。
普通ならとっくに見切りを付けてる。
20 :
心得をよく読みましょう:03/07/03 11:49 ID:t3soeLIp
カキコしているだけで他に行動を起こさないわけで
21 :
心得をよく読みましょう:03/07/03 21:16 ID:pG4vAxYi
>>20 某国工作員がいつ行動を起こすか?
それによっては…
管理人が…
22 :
心得をよく読みましょう:03/07/03 23:54 ID:KJGtSI4E
それにしても、相変わらず煽り方がワンパターンな腐れアンチ。
23 :
心得をよく読みましょう:03/07/04 03:42 ID:HJ7PPBz0
24 :
心得をよく読みましょう:03/07/04 04:04 ID:HJ7PPBz0
25 :
心得をよく読みましょう:03/07/04 22:11 ID:HJ7PPBz0
26 :
心得をよく読みましょう:03/07/05 06:10 ID:bZGWeNom
やっぱ工作員だわ。
Yahoo!BBからの書き込みが多いみたいだし。
27 :
心得をよく読みましょう:03/07/06 04:45 ID:T52cQgr5
ワンパターンだな。
28 :
心得をよく読みましょう:03/07/07 02:29 ID:YOaiDhs0
29 :
心得をよく読みましょう:03/07/08 01:45 ID:Lw+OkIay
馬鹿ばっかり。
30 :
心得をよく読みましょう:
本当に昼夜問わずご苦労なこった。